Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 15(2): 181-188, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38352830

ABSTRACT

We have designed and developed novel and selective TLR7 agonists that exhibited potent receptor activity in a cell-based reporter assay. In vitro, these agonists significantly induced secretion of cytokines IL-6, IL-1ß, IL-10, TNFa, IFNa, and IP-10 in human and mouse whole blood. Pharmacokinetic and pharmacodynamic studies in mice showed a significant secretion of IFNα and TNFα cytokines. When combined with aPD1 in a CT-26 tumor model, the lead compound showed strong synergistic antitumor activity with complete tumor regression in 8/10 mice dosed using the intravenous route. Structure-activity relationship studies enabled by structure-based designs of TLR7 agonists are disclosed.

2.
J Org Chem ; 88(19): 13553-13567, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37708032

ABSTRACT

Against the backdrop of the well-known O-sulfonylation of cyclopropyl alcohols with sulfonyl chlorides, we examined the feasibility of conducting regioselective C-sulfonylation. By emulating an umpolung strategy-guided design, we report for the first time the Cu(II)-catalyzed ß-sulfonylation of cyclopropanols by a mechanism that potentially involves an oxidative addition of a sulfonyl radical to a metal homoenolate. Unlike reported methods, this protocol allows a practical synthetic route to γ-keto sulfone building blocks from cyclopropanols by leveraging commercially available aryl- and alkyl-sulfonyl chlorides, common reagents in organic chemistry laboratories. Using operationally simple open-flask conditions, the preparative scope of starting materials was demonstrated using an array of aryl- and alkyl-substituted sulfonyl chlorides and cyclopropanols (43 examples, up to 96% yield).

3.
J Med Chem ; 65(16): 11150-11176, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35952307

ABSTRACT

Structure-property relationships associated with a series of (carbonyl)oxyalkyl amino acid ester prodrugs of the marketed HIV-1 protease inhibitor atazanavir (1), designed to enhance the systemic drug delivery, were examined. Compared to previously reported prodrugs, optimized candidates delivered significantly enhanced plasma exposure and trough concentration (Cmin at 24 h) of 1 in rats while revealing differentiated PK paradigms based on the kinetics of prodrug activation and drug release. Prodrugs incorporating primary amine-containing amino acid promoieties offered the benefit of rapid bioactivation that translated into low circulating levels of the prodrug while delivering a high Cmax value of 1. Interestingly, the kinetic profile of prodrug cleavage could be tailored for slower activation by structural modification of the amino terminus to either a tertiary amine or a dipeptide motif, which conferred a circulating depot of the prodrug that orchestrated a sustained release of 1 along with substantially reduced Cmax and a further enhanced Cmin.


Subject(s)
Prodrugs , Amines , Amino Acids/chemistry , Animals , Atazanavir Sulfate/pharmacology , Drug Delivery Systems , Prodrugs/chemistry , Rats
4.
J Org Chem ; 86(21): 14356-14370, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34554740

ABSTRACT

In contrast to the conventional 1,4-addition process, regioselective 1,2-addition of silyl enol ethers to quinones can now be achieved via a palladium(II) enolate pathway that provides access to 4-hydroxy-4-(2-oxo-2-arylethyl)cyclohexa-2,5-dien-1-one derivatives. This quinone alkylation protocol proceeds under mild reaction conditions at ambient temperature under open air and does not require either an external ligand for the palladium or the use of a base. Additionally, the cyclohexadienone products have been exploited as synthetic precursors for the construction of fused heteroaryl systems.


Subject(s)
Palladium , Silanes , Catalysis , Ligands , Quinones
5.
J Med Chem ; 62(7): 3553-3574, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30938524

ABSTRACT

Phosphate and amino acid prodrugs of the HIV-1 protease inhibitor (PI) atazanavir (1) were prepared and evaluated to address solubility and absorption limitations. While the phosphate prodrug failed to release 1 in rats, the introduction of a methylene spacer facilitated prodrug activation, but parent exposure was lower than that following direct administration of 1. Val amino acid and Val-Val dipeptides imparted low plasma exposure of the parent, although the exposure of the prodrugs was high, reflecting good absorption. Screening of additional amino acids resulted in the identification of an l-Phe ester that offered an improved exposure of 1 and reduced levels of the circulating prodrug. Further molecular editing focusing on the linker design culminated in the discovery of the self-immolative l-Phe-Sar dipeptide derivative 74 that gave four-fold improved AUC and eight-fold higher Ctrough values of 1 compared with oral administration of the drug itself, demonstrating a successful prodrug approach to the oral delivery of 1.


Subject(s)
Amino Acids/chemistry , Atazanavir Sulfate/chemistry , Atazanavir Sulfate/pharmacokinetics , Drug Design , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacokinetics , Phosphates/chemistry , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Atazanavir Sulfate/administration & dosage , Atazanavir Sulfate/chemical synthesis , Biological Availability , Esters , HIV Protease Inhibitors/administration & dosage , HIV Protease Inhibitors/chemical synthesis , Humans , Prodrugs/administration & dosage , Prodrugs/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...