Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 449-460, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38845489

ABSTRACT

Patients with emergent conditions are prone to develop intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS), which are closely associated with adverse outcomes. Currently, there is a lack of guiding documents for the management of IAH/ACS in the emergency departments in China. Based on a systematic review of recent researches and clinical experiences in emergency departments, the Emergency Medicine Branch if Chinese Medical Association and other professional organizations have jointly formulated the Emergency expert consensus on diagnosis and treatment of intra-abdominal hypertension and abdominal compartment syndrome in adults in China (2024) to enhance the diagnostic and therapeutic capabilities of emergency physicians regarding adult IAH/ACS. The consensus particularly emphasizes the importance of early identification, continuous monitoring, and timely treatment of IAH/ACS in the emergency settings. The consensus recommends routine intra-abdominal pressure (IAP) measurement for emergency patients with risk factors for IAH/ACS and suggests adjusting the monitoring frequency based on IAP levels. In terms of treatment, the consensus highlights a comprehensive approach that includes both non-surgical and surgical interventions, with additional recommendations for traditional Chinese medicine (TCM) treatments. The consensus also stresses the importance of fluid resuscitation, organ support, and preventive measures, proposing nutritional therapy and preventive strategies. The consensus provides more precise and practical guidance for the clinical diagnosis and treatment of emergency patients with IAH/ACS, which is conducive to improving clinical outcomes.


Subject(s)
Consensus , Intra-Abdominal Hypertension , Intra-Abdominal Hypertension/diagnosis , Intra-Abdominal Hypertension/therapy , Humans , China/epidemiology , Adult , Emergency Service, Hospital , Medicine, Chinese Traditional/methods , Risk Factors , Compartment Syndromes/diagnosis , Compartment Syndromes/therapy
2.
Hemasphere ; 8(6): e90, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38903535

ABSTRACT

Transcriptional cofactors of the ETO family are recurrent fusion partners in acute leukemia. We characterized the ETO2 regulome by integrating transcriptomic and chromatin binding analyses in human erythroleukemia xenografts and controlled ETO2 depletion models. We demonstrate that beyond its well-established repressive activity, ETO2 directly activates transcription of MYB, among other genes. The ETO2-activated signature is associated with a poorer prognosis in erythroleukemia but also in other acute myeloid and lymphoid leukemia subtypes. Mechanistically, ETO2 colocalizes with EP300 and MYB at enhancers supporting the existence of an ETO2/MYB feedforward transcription activation loop (e.g., on MYB itself). Both small-molecule and PROTAC-mediated inhibition of EP300 acetyltransferases strongly reduced ETO2 protein, chromatin binding, and ETO2-activated transcripts. Taken together, our data show that ETO2 positively enforces a leukemia maintenance program that is mediated in part by the MYB transcription factor and that relies on acetyltransferase cofactors to stabilize ETO2 scaffolding activity.

3.
Acta Physiol (Oxf) ; 240(7): e14145, 2024 07.
Article in English | MEDLINE | ID: mdl-38647279

ABSTRACT

AIMS: Active cigarette smoking is a major risk factor for chronic obstructive pulmonary disease that remains elevated after cessation. Skeletal muscle dysfunction has been well documented after smoking, but little is known about cardiac adaptations to cigarette smoking. The underlying cellular and molecular cardiac adaptations, independent of confounding lifestyle factors, and time course of reversibility by smoking cessation remain unclear. We hypothesized that smoking negatively affects cardiac metabolism and induces local inflammation in mice, which do not readily reverse upon 2-week smoking cessation. METHODS: Mice were exposed to air or cigarette smoke for 14 weeks with or without 1- or 2-week smoke cessation. We measured cardiac mitochondrial respiration by high-resolution respirometry, cardiac mitochondrial density, abundance of mitochondrial supercomplexes by electrophoresis, and capillarization, fibrosis, and macrophage infiltration by immunohistology, and performed cardiac metabolome and lipidome analysis by mass spectrometry. RESULTS: Mitochondrial protein, supercomplex content, and respiration (all p < 0.03) were lower after smoking, which were largely reversed within 2-week smoking cessation. Metabolome and lipidome analyses revealed alterations in mitochondrial metabolism, a shift from fatty acid to glucose metabolism, which did not revert to control upon smoking cessation. Capillary density was not different after smoking but increased after smoking cessation (p = 0.02). Macrophage infiltration and fibrosis (p < 0.04) were higher after smoking but did not revert to control upon smoking cessation. CONCLUSIONS: While cigarette-impaired smoking-induced cardiac mitochondrial function was reversed by smoking cessation, the remaining fibrosis and macrophage infiltration may contribute to the increased risk of cardiovascular events after smoking cessation.


Subject(s)
Smoking Cessation , Animals , Mice , Male , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Ventricular Remodeling
4.
Nature ; 626(7998): 385-391, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096903

ABSTRACT

A limitation of current SARS-CoV-2 vaccines is that they provide minimal protection against infection with current Omicron subvariants1,2, although they still provide protection against severe disease. Enhanced mucosal immunity may be required to block infection and onward transmission. Intranasal administration of current vaccines has proven inconsistent3-7, suggesting that alternative immunization strategies may be required. Here we show that intratracheal boosting with a bivalent Ad26-based SARS-CoV-2 vaccine results in substantial induction of mucosal humoral and cellular immunity and near-complete protection against SARS-CoV-2 BQ.1.1 challenge. A total of 40 previously immunized rhesus macaques were boosted with a bivalent Ad26 vaccine by the intramuscular, intranasal and intratracheal routes, or with a bivalent mRNA vaccine by the intranasal route. Ad26 boosting by the intratracheal route led to a substantial expansion of mucosal neutralizing antibodies, IgG and IgA binding antibodies, and CD8+ and CD4+ T cell responses, which exceeded those induced by Ad26 boosting by the intramuscular and intranasal routes. Intratracheal Ad26 boosting also led to robust upregulation of cytokine, natural killer, and T and B cell pathways in the lungs. After challenge with a high dose of SARS-CoV-2 BQ.1.1, intratracheal Ad26 boosting provided near-complete protection, whereas the other boosting strategies proved less effective. Protective efficacy correlated best with mucosal humoral and cellular immune responses. These data demonstrate that these immunization strategies induce robust mucosal immunity, suggesting the feasibility of developing vaccines that block respiratory viral infections.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunization, Secondary , Macaca mulatta , SARS-CoV-2 , Animals , Humans , Administration, Intranasal , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cytokines/immunology , Immunity, Mucosal/immunology , Immunization, Secondary/methods , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Injections, Intramuscular , Killer Cells, Natural/immunology , Lung/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology , SARS-CoV-2/classification , SARS-CoV-2/immunology , Trachea/immunology , Trachea/virology
5.
Biomaterials ; 303: 122385, 2023 12.
Article in English | MEDLINE | ID: mdl-37952499

ABSTRACT

Systemic injection of thrombolytic drugs is the gold standard treatment for non-invasive blood clot resolution. The most serious risks associated with the intravenous injection of tissue plasminogen activator-like proteins are the bleeding complication and the dose related neurotoxicity. Indeed, the drug has to be injected in high concentrations due to its short half-life, the presence of its natural blood inhibitor (PAI-1) and the fast hepatic clearance (0.9 mg/kg in humans, 10 mg/kg in mouse models). Overall, there is a serious need for a dose-reduced targeted treatment to overcome these issues. We present in this article a new acoustic cavitation-based method for polymer MBs synthesis, three times faster than current hydrodynamic-cavitation method. The generated MBs are ultrasound responsive, stable and biocompatible. Their functionalization enabled the efficient and targeted treatment of stroke, without side effects. The stabilizing shell of the MBs is composed of Poly-Isobutyl Cyanoacrylate (PIBCA), copolymerized with fucoidan. Widely studied for its targeting properties, fucoidan exhibit a nanomolar affinity for activated endothelium and activated platelets (P-selectins). Secondly, the thrombolytic agent (rtPA) was loaded onto microbubbles (MBs) with a simple adsorption protocol. Hence, the present study validated the in vivo efficiency of rtPA-loaded Fuco MBs to be over 50 % more efficient than regular free rtPA injection for stroke resolution. In addition, the relative injected rtPA grafted onto targeting MBs was 1/10th of the standard effective dose (1 mg/kg in mouse). As a result, no hemorrhagic event, BBB leakage nor unexpected tissue distribution were observed.


Subject(s)
Stroke , Tissue Plasminogen Activator , Humans , Animals , Mice , Tissue Plasminogen Activator/therapeutic use , Microbubbles , Polymers , Fibrinolytic Agents/therapeutic use , Stroke/drug therapy
6.
Nat Commun ; 14(1): 6703, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872311

ABSTRACT

Thrombosis with thrombocytopenia syndrome (TTS) is a rare but potentially severe adverse event following immunization with adenovirus vector-based COVID-19 vaccines such as Ad26.COV2.S (Janssen) and ChAdOx1 (AstraZeneca). However, no case of TTS has been reported in over 1.5 million individuals who received a second immunization with Ad26.COV2.S in the United States. Here we utilize transcriptomic and proteomic profiling to compare individuals who receive two doses of Ad26.COV2.S with those vaccinated with BNT162b2 or mRNA-1273. Initial Ad26.COV2.S vaccination induces transient activation of platelet and coagulation and innate immune pathways that resolve by day 7; by contrast, patients with TTS show robust upregulation of these pathways on days 15-19 following initial Ad26.COV2.S vaccination. Meanwhile, a second immunization or a reduced initial dose of Ad26.COV2.S induces lower activation of these pathways than does the full initial dose. Our data suggest a role of coagulation and proinflammatory pathways in TTS pathogenesis, which may help optimize vaccination regimens to reduce TTS risk.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thrombocytopenia , Thrombosis , Humans , Ad26COVS1 , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Proteomics , Syndrome , Thrombocytopenia/etiology , Thrombosis/etiology , Vaccination/adverse effects
7.
Cell ; 186(21): 4652-4661.e13, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37734373

ABSTRACT

The mpox outbreak of 2022-2023 involved rapid global spread in men who have sex with men. We infected 18 rhesus macaques with mpox by the intravenous, intradermal, and intrarectal routes and observed robust antibody and T cell responses following all three routes of infection. Numerous skin lesions and high plasma viral loads were observed following intravenous and intradermal infection. Skin lesions peaked on day 10 and resolved by day 28 following infection. On day 28, we re-challenged all convalescent and 3 naive animals with mpox. All convalescent animals were protected against re-challenge. Transcriptomic studies showed upregulation of innate and inflammatory responses and downregulation of collagen formation and extracellular matrix organization following challenge, as well as rapid activation of T cell and plasma cell responses following re-challenge. These data suggest key mechanistic insights into mpox pathogenesis and immunity. This macaque model should prove useful for evaluating mpox vaccines and therapeutics.


Subject(s)
Macaca mulatta , Monkeypox virus , Mpox (monkeypox) , Animals , Humans , Male , Homosexuality, Male , Mpox (monkeypox)/immunology , Sexual and Gender Minorities , Monkeypox virus/physiology
8.
Cell Rep Med ; 4(7): 101122, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37467721

ABSTRACT

The discovery of biomarkers that predict viral rebound after discontinuation of antiretroviral therapy (ART) would significantly contribute to the HIV cure field. We previously initiated ART in 20 rhesus macaques on days 0, 1, 2, and 3 following SIVmac251 infection. After 6 months, we discontinued ART and observed viral rebound in 9 of 20 animals, which provided an opportunity to define peripheral biomarkers on ART that predicted viral rebound following ART discontinuation. We show that interleukin-1 (IL-1), IL-6_JAK_STAT3, IL-10, transforming growth factor ß (TGF-ß), IL-22, and IL-23 signaling and activation of monocyte, macrophage, and antigen processing and presentation pathways during ART suppression correlated with viral rebound. These signatures were validated in a second cohort of macaques. Our data suggest that low levels of antigen and proinflammatory signaling during ART suppression correlate with the presence of a rebound-competent viral reservoir. Interventions that modulate these peripheral biomarkers may be promising candidates to evaluate as potential HIV-1 cure strategies.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/physiology , Macaca mulatta , Anti-Retroviral Agents/therapeutic use , Anti-Retroviral Agents/pharmacology , Virus Replication , HIV Infections/drug therapy , Biomarkers
9.
iScience ; 26(6): 106963, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37378347

ABSTRACT

Bacillus Calmette-Guérin (BCG) remains the only approved tuberculosis (TB) vaccine despite limited efficacy. Preclinical studies of next-generation TB vaccines typically use a murine aerosol model with a supraphysiologic challenge dose. Here, we show that the protective efficacy of a live attenuated Mycobacterium tuberculosis (Mtb) vaccine ΔLprG markedly exceeds that of BCG in a low-dose murine aerosol challenge model. BCG reduced bacterial loads but did not prevent establishment or dissemination of infection in this model. In contrast, ΔLprG prevented detectable infection in 61% of mice and resulted in anatomic containment of 100% breakthrough infections to a single lung. Protection was partially abrogated in a repeated low-dose challenge model, which showed serum IL-17A, IL-6, CXCL2, CCL2, IFN-γ, and CXCL1 as correlates of protection. These data demonstrate that ΔLprG provides increased protection compared to BCG, including reduced detectable infection and anatomic containment, in a low-dose murine challenge model.

10.
PLoS One ; 18(4): e0281003, 2023.
Article in English | MEDLINE | ID: mdl-37036878

ABSTRACT

5xFAD transgenic (TG) mice are used widely in AD preclinical trials; however, data on sample sizes are largely unaddressed. We therefore performed estimates of sample sizes and effect sizes for typical behavioural and neuropathological outcome measures in TG 5xFAD mice, based upon data from single-sex (female) groups. Group-size estimates to detect normalisation of TG body weight to WT littermate levels at 5.5m of age were N = 9-15 depending upon algorithm. However, by 1 year of age, group sizes were small (N = 1 -<6), likely reflecting the large difference between genotypes at this age. To detect normalisation of TG open-field hyperactivity to WT levels at 13-14m, group sizes were also small (N = 6-8). Cued learning in the Morris water maze (MWM) was normal in Young TG mice (5m of age). Mild deficits were noted during MWM spatial learning and memory. MWM reversal learning and memory revealed greater impairment, and groups of up to 22 TG mice were estimated to detect normalisation to WT performance. In contrast, Aged TG mice (tested between 13 and 14m) failed to complete the visual learning (non-spatial) phase of MWM learning, likely due to a failure to recognise the platform as an escape. Estimates of group size to detect normalisation of this severe impairment were small (N = 6-9, depending upon algorithm). Other cognitive tests including spontaneous and forced alternation and novel-object recognition either failed to reveal deficits in TG mice or deficits were negligible. For neuropathological outcomes, plaque load, astrocytosis and microgliosis in frontal cortex and hippocampus were quantified in TG mice aged 2m, 4m and 6m. Sample-size estimates were ≤9 to detect the equivalent of a reduction in plaque load to the level of 2m-old TG mice or the equivalent of normalisation of neuroinflammation outcomes. However, for a smaller effect size of 30%, larger groups of up to 21 mice were estimated. In light of published guidelines on preclinical trial design, these data may be used to provide provisional sample sizes and optimise preclinical trials in 5xFAD TG mice.


Subject(s)
Alzheimer Disease , Mice , Female , Animals , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Sample Size , Maze Learning , Mice, Transgenic , Disease Models, Animal
11.
Int J Mol Sci ; 24(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36982504

ABSTRACT

The reconstruction of bones following tumor excision and radiotherapy remains a challenge. Our previous study, performed using polysaccharide-based microbeads that contain hydroxyapatite, found that these have osteoconductivity and osteoinductive properties. New formulations of composite microbeads containing HA particles doped with strontium (Sr) at 8 or 50% were developed to improve their biological performance and were evaluated in ectopic sites. In the current research, we characterized the materials by phase-contrast microscopy, laser dynamic scattering particle size-measurements and phosphorus content, before their implantation into two different preclinical bone defect models in rats: the femoral condyle and the segmental bone. Eight weeks after the implantation in the femoral condyle, the histology and immunohistochemistry analyses showed that Sr-doped matrices at both 8% and 50% stimulate bone formation and vascularization. A more complex preclinical model of the irradiation procedure was then developed in rats within a critical-size bone segmental defect. In the non-irradiated sites, no significant differences between the non-doped and Sr-doped microbeads were observed in the bone regeneration. Interestingly, the Sr-doped microbeads at the 8% level of substitution outperformed the vascularization process by increasing new vessel formation in the irradiated sites. These results showed that the inclusion of strontium in the matrix-stimulated vascularization in a critical-size model of bone tissue regeneration after irradiation.


Subject(s)
Bone Regeneration , Polymers , Rats , Animals , Hydroxyapatites/chemistry , Osteogenesis , Strontium/chemistry
12.
Ann Chir Plast Esthet ; 68(4): 315-325, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36966096

ABSTRACT

PURPOSE: Free muscular flaps are commonly used in plastic surgery. The main reason of failure is thrombosis induced by a phenomenon called ischemia reperfusion. Preconditioning showed an interest to prevent ischemia reperfusion injury in transplantation surgery. The aim of the study is to evaluate the effect of ischemic preconditioning on skeletal tissue tolerance after warm venous ischemia. MATERIALS AND METHODS: We realized an experimental study with latissimus dorsi flaps of 12 pigs, divided in 6 groups in function of their time of preconditioning and duration of warm venous ischemia. A morphologic analysis was performed measuring cell's diameter and interstitial tissue area and notifying the presence or absence of neutrophils, necrosis or intravascular thrombosis. To detect inflammation, necrosis or hypoxia, immunohistochemistry was effectuated using the follow primary antibodies, AIF, HIF1 alpha, caspase 3, SOD 1 and PKC epsilon. TUNEL assay showed apoptosis cells, were realized. One way Anova test was performed to compare the quantitative evolution over time of histological parameters and rate of apoptosis. RESULTS: Preconditioning of 40min or 1hour allowed to reduced ischemia reperfusion lesions: no cellular or interstitial oedema, reduction of neutrophils infiltrate and intravascular thrombus. TUNEL assay showed a higher rate of apoptosis nucleus for the control group E compared to preconditioning group C and D. Immunohistochemistry results were no relevant. CONCLUSION: We showed a diminution of lesions of ischemia reperfusion for experimental groups with preconditioning: diminution of interstitial oedema, of cellular oedema, diminution of neutrophils infiltrated and level of apoptosis cells. Preconditioning of 40minutes were as efficient as one hour.


Subject(s)
Ischemic Preconditioning , Reperfusion Injury , Animals , Swine , Ischemic Preconditioning/methods , Ischemia/prevention & control , Surgical Flaps/blood supply , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology , Necrosis
13.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(2): 113-123, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36916369

ABSTRACT

In order to improve the popularity of first aid knowledge among the public, First Aid Professional Committee of China Geriatric Health Care Association has formulated the Public guide for "first aid onsite-first responders action" in China (2023). This guide aims at providing with the first eyewitness action guide that are critical but weak onsite rescue link of Chinese emergency medical service system to the public. In the first scene of injury and illness emergencies, it is very important for the first eyewitness to make a prompt and correct response in the first time. Based on best practice evidence, this guide combs the core concepts of onsite first aid in order to provide guidance and help in standardizing the popularization of public first aid knowledge and skills.


Subject(s)
Emergency Medical Services , Emergency Responders , Humans , Aged , First Aid , China , Emergencies
14.
Mater Today Bio ; 19: 100554, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36756209

ABSTRACT

Liver tissue engineering approaches aim to support drug testing, assistance devices, or transplantation. However, their suitability for clinical application remains unsatisfactory. Herein, we demonstrate the beneficial and biocompatible use of porous pullulan-dextran hydrogel for the self-assembly of hepatocytes and biliary-like cells into functional 3D microtissues. Using HepaRG cells, we obtained 21 days maintenance of engineered liver polarity, functional detoxification and excretion systems, as well as glycogen storage in hydrogel. Implantation on two liver lobes in mice of hydrogels containing 3800 HepaRG 3D structures of 100 â€‹µm in diameter, indicated successful engraftment and no signs of liver toxicity after one month. Finally, after acetaminophen-induced liver failure, when mice were transplanted with engineered livers on left lobe and peritoneal cavity, the survival rate at 7 days significantly increased by 31.8% compared with mice without cell therapy. These findings support the clinical potential of pullulan-dextran hydrogel for liver failure management.

15.
Leukemia ; 37(3): 571-579, 2023 03.
Article in English | MEDLINE | ID: mdl-36585521

ABSTRACT

Pediatric acute myeloid leukemia expressing the ETO2::GLIS2 fusion oncogene is associated with dismal prognosis. Previous studies have shown that ETO2::GLIS2 can efficiently induce leukemia development associated with strong transcriptional changes but those amenable to pharmacological targeting remained to be identified. By studying an inducible ETO2::GLIS2 cellular model, we uncovered that de novo ETO2::GLIS2 expression in human cells led to increased CASP3 transcription, CASP3 activation, and cell death. Patient-derived ETO2::GLIS2+ leukemic cells expressed both high CASP3 and high BCL2. While BCL2 inhibition partly inhibited ETO2::GLIS2+ leukemic cell proliferation, BH3 profiling revealed that it also sensitized these cells to MCL1 inhibition indicating a functional redundancy between BCL2 and MCL1. We further show that combined inhibition of BCL2 and MCL1 is mandatory to abrogate disease progression using in vivo patient-derived xenograft models. These data reveal that a transcriptional consequence of ETO2::GLIS2 expression includes a positive regulation of the pro-apoptotic CASP3 and associates with a vulnerability to combined targeting of two BCL2 family members providing a novel therapeutic perspective for this aggressive pediatric AML subgroup.


Subject(s)
Leukemia, Myeloid , Transcription Factors , Child , Humans , Caspase 3 , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Prognosis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
16.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(12): 1233-1237, 2022 12.
Article in Chinese | MEDLINE | ID: mdl-36567574

ABSTRACT

In order to more actively respond to the new situation of prevention and control of coronavirus disease 2019 (COVID-19), and to guide home health management for adults who are asymptomatic carriers or exhibit mild symptoms, the World Federation of Chinese Medical Societies Emergency Committee, World Federation of Chinese Medical Societies Respiratory Diseases, World Federation of Chinese Medical Societies Heat Disease Committee, Chinese Association of Chinese Medicine Pulmonary Disease Chapter, the First Aid Group of Integrated Traditional Chinese and Western Medicine of the Emergency Branch of the Chinese Medical Doctor Association, the First Aid Group of Integrated Traditional Chinese and Western Medicine of the Emergency Branch of the Emergency Physician Branch of the Chinese Medical Association, the Emergency Branch of the Shanghai Chinese Medical Association, the Institute of Emergency and Critical Care of the Shanghai University of Traditional Chinese Medicine, National Health Commission's Key Laboratory of Critical Care Medicine and other academic institutions have organized the medical experts at treating COVID-19 front line in China to investigate and discuss the traditional Chinese medicine (TCM) health management at home for adults infected with SARS-CoV-2 variants, and concluded the "Expert consensus on traditional Chinese medicine health management at home for adults infected with SARS-CoV-2 variants", in combination with "Guideline on SARS-CoV-2 variant infection recover at home" issued by the Joint Prevention and Control Mechanism of the State Council. The expert consensus included home environment, asymptomatic infection, infection with mild symptoms, recovery period, and TCM non-drug therapy intervention, which will provide a guidance to TCM intervention at home to adults infected with SARS-CoV-2 variants.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Adult , Humans , SARS-CoV-2 , Consensus , East Asian People , Drugs, Chinese Herbal/therapeutic use , China , Medicine, Chinese Traditional
17.
Proc Natl Acad Sci U S A ; 119(33): e2121040119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35943986

ABSTRACT

Regulation of firing rate homeostasis constitutes a fundamental property of central neural circuits. While intracellular Ca2+ has long been hypothesized to be a feedback control signal, the molecular machinery enabling a network-wide homeostatic response remains largely unknown. We show that deletion of insulin-like growth factor-1 receptor (IGF-1R) limits firing rate homeostasis in response to inactivity, without altering the distribution of baseline firing rates. The deficient firing rate homeostatic response was due to disruption of both postsynaptic and intrinsic plasticity. At the cellular level, we detected a fraction of IGF-1Rs in mitochondria, colocalized with the mitochondrial calcium uniporter complex (MCUc). IGF-1R deletion suppressed transcription of the MCUc members and burst-evoked mitochondrial Ca2+ (mitoCa2+) by weakening mitochondria-to-cytosol Ca2+ coupling. Overexpression of either mitochondria-targeted IGF-1R or MCUc in IGF-1R-deficient neurons was sufficient to rescue the deficits in burst-to-mitoCa2+ coupling and firing rate homeostasis. Our findings indicate that mitochondrial IGF-1R is a key regulator of the integrated homeostatic response by tuning the reliability of burst transfer by MCUc. Based on these results, we propose that MCUc acts as a homeostatic Ca2+ sensor. Faulty activation of MCUc may drive dysregulation of firing rate homeostasis in aging and in brain disorders associated with aberrant IGF-1R/MCUc signaling.


Subject(s)
Calcium Channels , Calcium , Receptor, IGF Type 1 , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Gene Deletion , Homeostasis , Mice , Neuronal Plasticity , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Reproducibility of Results
18.
J Virol ; 96(17): e0080822, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36000842

ABSTRACT

The mechanisms underlying depletion of CD4 T cells during acute HIV-1 infection are not well understood. Here we show that caspase-1-induced pyroptosis, a highly inflammatory programmed cell death pathway, is the dominant mechanism responsible for the rapid depletion of CD4 T cells in gut-associated lymphatic tissue (GALT), spleen, and lymph nodes during acute simian immunodeficiency virus (SIV) infection in rhesus macaques. Upregulation of interferon-gamma inducible factor 16, a host DNA sensor that triggers pyroptosis, was also observed in tissue-resident CD4 T cells and correlated with viral loads and CD4 T cell loss. In contrast, caspase-3-mediated apoptosis and viral cytotoxicity only accounted for a small fraction of CD4 T cell death. Other programmed cell death mechanisms, including mitochondria-induced caspase-independent cell death, necroptosis, and autophagy, did not significantly contribute to CD4 T cell depletion. These data support a model in which caspase-1-mediated pyroptosis is the principal mechanism that results in CD4 T cell loss in the GALT and lymphoid organs and release of proinflammatory cytokines. These findings contribute to our understanding of the pathogenesis of acute SIV infection and have important implications for the development of therapeutic strategies. IMPORTANCE Different mechanisms for CD4 T cell depletion during acute HIV-1 infection have been proposed. In this study, we demonstrate that in early simian immunodeficiency virus infection, depletion of CD4 T cells is primarily due to pyroptosis. Other mechanisms may also contribute in a minor way to CD4 T cell depletion.


Subject(s)
CD4-Positive T-Lymphocytes , Macaca mulatta , Pyroptosis , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Caspase 1/metabolism , Cytokines , Lymphoid Tissue/immunology , Lymphoid Tissue/pathology , Macaca mulatta/immunology , Macaca mulatta/virology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/pathogenicity
19.
Biomater Adv ; 139: 212973, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35891598

ABSTRACT

Freeze-drying is a process of choice to texture hydrogel scaffolds with pores formed by an ice-templating mechanism. Using state-of-the-art microscopies (cryo-EBSD, µCT, CLSM), this work evidences and quantifies the effect of crosslinking and ice nucleation temperature on the porous structure of thin hydrogel scaffolds freeze-dried at a low cooling rate. We focused on a polysaccharide-based hydrogel and developed specific protocols to monitor or trigger ice nucleation for this study. At a fixed number of intermolecular crosslinks per primary molecule (p = 5), the mean pore size in the dry state decreases linearly from 240 to 170 µm, when ice nucleation temperature decreases from -6 °C to -18 °C. When ice nucleation temperature is fixed at -10 °C, the mean pore size decreases from 250 to 150 µm, as the crosslinking degree increases from p = 3 to p = 7. Scaffold infiltration ability was quantified with synthetic microspheres. The seeding efficiency was assessed with MC3T3-E1 individual cells and HepaRG™ spheroids. These data collapse into a single master curve that exhibits a sharp transition from 100 % to 0 %-efficiency as the entity diameter approaches the mean pore size in the dry state. Altogether, we can thus precisely tune the porosity of these 3D materials of interest for 3D cell culture and cGMP production for tissue engineering.


Subject(s)
Hydrogels , Ice , Freeze Drying/methods , Hydrogels/chemistry , Porosity , Tissue Engineering/methods
20.
JACC Basic Transl Sci ; 7(5): 425-441, 2022 May.
Article in English | MEDLINE | ID: mdl-35530264

ABSTRACT

To gain insights into the mechanisms driving cardiovascular complications in COVID-19, we performed a case-control plasma proteomics study in COVID-19 patients. Our results identify the senescence-associated secretory phenotype, a marker of biological aging, as the dominant process associated with disease severity and cardiac involvement. FSTL3, an indicator of senescence-promoting Activin/TGFß signaling, and ADAMTS13, the von Willebrand Factor-cleaving protease whose loss-of-function causes microvascular thrombosis, were among the proteins most strongly associated with myocardial stress and injury. Findings were validated in a larger COVID-19 patient cohort and the hamster COVID-19 model, providing new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.

SELECTION OF CITATIONS
SEARCH DETAIL
...