Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1276196, 2023.
Article in English | MEDLINE | ID: mdl-38077407

ABSTRACT

Solute carrier (SLC) transporters are membrane-bound proteins that facilitate nutrient transport, and the movement across cellular membranes of various substrates ranging from ions to amino acids, metabolites and drugs. Recently, SLCs have gained increased attention due to their functional linkage to innate immunological processes such as the clearance of dead cells and anti-microbial defense. Further, the druggable nature of these transporters provides unique opportunities for improving outcomes in different immunological diseases. Although the SLCs represent the largest group of transporters and are often identified as significant hits in omics data sets, their role in immunology has been insufficiently explored. This is partly due to the absence of tools that allow identification of SLC expression in particular immune cell types and enable their comparison before embarking on functional studies. In this study, we used publicly available RNA-Seq data sets to analyze the transcriptome in adaptive and innate immune cells, focusing on differentially and highly expressed SLCs. This revealed several new insights: first, we identify differentially expressed SLC transcripts in phagocytes (macrophages, dendritic cells, and neutrophils) compared to adaptive immune cells; second, we identify new potential immune cell markers based on SLC expression; and third, we provide user-friendly online tools for researchers to explore SLC genes of interest (and the rest of the genes as well), in three-way comparative dot plots among immune cells. We expect this work to facilitate SLC research and comparative transcriptomic studies across different immune cells.


Subject(s)
Amino Acids , Membrane Transport Proteins , Mice , Animals , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Cell Membrane/metabolism , Amino Acids/metabolism , Gene Expression Profiling , Transcriptome
2.
Nature ; 596(7871): 262-267, 2021 08.
Article in English | MEDLINE | ID: mdl-34349263

ABSTRACT

Regulated cell death is an integral part of life, and has broad effects on organism development and homeostasis1. Malfunctions within the regulated cell death process, including the clearance of dying cells, can manifest in diverse pathologies throughout various tissues including the gastrointestinal tract2. A long appreciated, yet elusively defined relationship exists between cell death and gastrointestinal pathologies with an underlying microbial component3-6, but the direct effect of dying mammalian cells on bacterial growth is unclear. Here we advance a concept that several Enterobacteriaceae, including patient-derived clinical isolates, have an efficient growth strategy to exploit soluble factors that are released from dying gut epithelial cells. Mammalian nutrients released after caspase-3/7-dependent apoptosis boosts the growth of multiple Enterobacteriaceae and is observed using primary mouse colonic tissue, mouse and human cell lines, several apoptotic triggers, and in conventional as well as germ-free mice in vivo. The mammalian cell death nutrients induce a core transcriptional response in pathogenic Salmonella, and we identify the pyruvate formate-lyase-encoding pflB gene as a key driver of bacterial colonization in three contexts: a foodborne infection model, a TNF- and A20-dependent cell death model, and a chemotherapy-induced mucositis model. These findings introduce a new layer to the complex host-pathogen interaction, in which death-induced nutrient release acts as a source of fuel for intestinal bacteria, with implications for gut inflammation and cytotoxic chemotherapy treatment.


Subject(s)
Apoptosis , Enterobacteriaceae/growth & development , Enterobacteriaceae/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Intestines/cytology , Intestines/microbiology , Acetyltransferases/genetics , Acetyltransferases/metabolism , Animals , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line , Disease Models, Animal , Epithelial Cells/pathology , Female , Foodborne Diseases/microbiology , Germ-Free Life , Host-Pathogen Interactions , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Male , Mice , Mucositis/chemically induced , Salmonella/enzymology , Salmonella/genetics , Salmonella/growth & development , Salmonella/metabolism , Transcriptome , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Cell Death Differ ; 28(3): 843-860, 2021 03.
Article in English | MEDLINE | ID: mdl-33214663

ABSTRACT

Modern cancer therapies often involve the combination of tumor-directed cytotoxic strategies and generation of a host antitumor immune response. The latter is unleashed by immunotherapies that activate the immune system generating a more immunostimulatory tumor microenvironment and a stronger tumor antigen-specific immune response. Studying the interaction between antitumor cytotoxic therapies, dying cancer cells, and the innate and adaptive immune system requires appropriate experimental tumor models in mice. In this review, we discuss the immunostimulatory and immunosuppressive properties of cancer cell lines commonly used in immunogenic cell death (ICD) studies being apoptosis or necroptosis. We will especially focus on the antigenic component of immunogenicity. While in several cancer cell lines the epitopes of endogenously expressed tumor antigens are known, these intrinsic epitopes are rarely determined in experimental apoptotic or necroptotic ICD settings. Instead by far the most ICD research studies investigate the antigenic response against exogenously expressed model antigens such as ovalbumin or retroviral epitopes (e.g., AH1). In this review, we will argue that the immune response against endogenous tumor antigens and the immunopeptidome profile of cancer cell lines affect the eventual biological readouts in the typical prophylactic tumor vaccination type of experiments used in ICD research, and we will propose additional methods involving immunopeptidome profiling, major histocompatibility complex molecule expression, and identification of tumor-infiltrating immune cells to document intrinsic immunogenicity following different cell death modalities.


Subject(s)
Antigens, Neoplasm/immunology , Immunodominant Epitopes/immunology , Immunogenic Cell Death/immunology , Neoplasms, Experimental/immunology , Neoplasms/immunology , Animals , Apoptosis/immunology , Cell Line, Tumor , Humans , Immunotherapy , Mice , Necroptosis/immunology , Neoplasms/therapy
4.
J Immunol ; 204(4): 775-787, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31900335

ABSTRACT

Immunogenic cell death (ICD) occurs when a dying cell releases cytokines and damage-associated molecular patterns, acting as adjuvants, and expresses Ags that induce a specific antitumor immune response. ICD is studied mainly in the context of regulated cell death pathways, especially caspase-mediated apoptosis marked by endoplasmic reticulum stress and calreticulin exposure and, more recently, also in relation to receptor-interacting protein kinase-driven necroptosis, whereas unregulated cell death like accidental necrosis is nonimmunogenic. Importantly, the murine cancer cell lines used in ICD studies often express virally derived peptides that are recognized by the immune system as tumor-associated Ags. However, it is unknown how different cell death pathways may affect neoepitope cross-presentation and Ag recognition of cancer cells. We used a prophylactic tumor vaccination model and observed that both apoptotic and necroptotic colon carcinoma CT26 cells efficiently immunized mice against challenge with a breast cancer cell line that expresses the same immunodominant tumor Ag, AH1, but only necroptotic CT26 cells would mount an immune response against CT26-specific neoepitopes. By CRISPR/Cas9 genome editing, we knocked out AH1 and saw that only necroptotic CT26 cells were still able to protect mice against tumor challenge. Hence, in this study, we show that endogenous AH1 tumor Ag expression can mask the strength of immunogenicity induced by different cell death pathways and that upon knockout of AH1, necroptosis was more immunogenic than apoptosis in a prophylactic tumor vaccination model. This work highlights necroptosis as a possible preferred ICD form over apoptosis in the treatment of cancer.


Subject(s)
Antigens, Neoplasm/immunology , Apoptosis/immunology , Immunodominant Epitopes/immunology , Necroptosis/immunology , Neoplasms, Experimental/immunology , Animals , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C
5.
Immunol Rev ; 280(1): 207-219, 2017 11.
Article in English | MEDLINE | ID: mdl-29027225

ABSTRACT

Necroptosis is one the best-characterized forms of regulated necrosis. Necroptosis is mediated by the kinase activities of receptor interacting protein kinase-1 and receptor interacting protein kinase-3, which eventually lead to the activation of mixed lineage kinase domain-like. Necroptosis is characterized by rapid permeabilization of the plasma membrane, which is associated with the release of the cell content and subsequent exposure of damage-associated molecular patterns (DAMPs) and cytokines/chemokines. This release underlies the immunogenic nature of necroptotic cancer cells and their ability to induce efficient anti-tumor immunity. Triggering necroptosis has become especially important in experimental cancer treatments as an alternative to triggering apoptosis because one of the hallmarks of cancer is the blockade or evasion of apoptosis. In this review, we discuss recent advances in necroptosis research and the functional consequences of necroptotic cancer cell death, with focus on its immunogenicity and its role in the activation of anti-tumor immunity. Next, we discuss the molecular mechanisms of phosphatidylserine exposure during necroptosis and its role in the recognition of necroptotic cells. We also highlight the complex role of the necroptotic pathway in tumor promotion and suppression and in metastasis. Future studies will show whether necroptosis is truly a better strategy to overcome apoptosis resistance and provide the insights needed for development of novel treatment strategies for cancer.


Subject(s)
Apoptosis , Cancer Vaccines/immunology , Cell Death , DNA Damage/immunology , DNA/immunology , Immunotherapy/methods , Necrosis , Animals , Cytokines/metabolism , Humans , Phosphatidylserines/metabolism , Tumor Escape
6.
Cell Rep ; 15(2): 274-87, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27050509

ABSTRACT

Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.


Subject(s)
Antineoplastic Agents/immunology , Apoptosis , Immunity , Neoplasms/immunology , Vaccination , Alarmins/metabolism , Animals , Apoptosis/drug effects , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Chemokines/metabolism , Cross-Priming/drug effects , Cross-Priming/immunology , Dendritic Cells/cytology , Dendritic Cells/drug effects , Immunity/drug effects , Ligands , Mice , Models, Biological , NF-kappa B/metabolism , Necrosis , Phagocytosis/drug effects , Protein Multimerization/drug effects , Tetracycline/pharmacology
7.
Nucleic Acids Res ; 44(5): 2214-26, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26721387

ABSTRACT

We have recently identified lens epithelium-derived growth factor (LEDGF/p75, also known as PSIP1) as a component of the homologous recombination DNA repair machinery. Through its Pro-Trp-Trp-Pro (PWWP) domain, LEDGF/p75 binds to histone marks associated with active transcription and promotes DNA end resection by recruiting DNA endonuclease retinoblastoma-binding protein 8 (RBBP8/CtIP) to broken DNA ends. Here we show that the structurally related PWWP domain-containing protein, hepatoma-derived growth factor-related protein 2 (HDGFRP2), serves a similar function in homologous recombination repair. Its depletion compromises the survival of human U2OS osteosarcoma and HeLa cervix carcinoma cells and impairs the DNA damage-induced phosphorylation of replication protein A2 (RPA2) and the recruitment of DNA endonuclease RBBP8/CtIP to DNA double strand breaks. In contrast to LEDGF/p75, HDGFRP2 binds preferentially to histone marks characteristic for transcriptionally silent chromatin. Accordingly, HDGFRP2 is found in complex with the heterochromatin-binding chromobox homologue 1 (CBX1) and Pogo transposable element with ZNF domain (POGZ). Supporting the functionality of this complex, POGZ-depleted cells show a similar defect in DNA damage-induced RPA2 phosphorylation as HDGFRP2-depleted cells. These data suggest that HDGFRP2, possibly in complex with POGZ, recruits homologous recombination repair machinery to damaged silent genes or to active genes silenced upon DNA damage.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , DNA Breaks, Double-Stranded , Histones/genetics , Intercellular Signaling Peptides and Proteins/genetics , Recombinational DNA Repair , Transposases/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Survival , Chromatin/chemistry , Chromatin/metabolism , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/metabolism , Endodeoxyribonucleases , HeLa Cells , Histones/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Phosphorylation , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Replication Protein A/genetics , Replication Protein A/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transposases/antagonists & inhibitors , Transposases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...