Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 56(Pt 5): 1456-1465, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37791369

ABSTRACT

The room-temperature and low-temperature structure(s) of Ba2NaNb5O15 (BNN) have been debated since the structure was proposed in the 1960s. This work revisits the structures and phase transitions of BNN, combining high-resolution X-ray and neutron powder diffraction with density functional theory calculations. Temperature-dependent high-resolution X-ray powder diffraction patterns are collected from 4 to 918 K, and sequential batch Rietveld refinement using a symmetry mode approach to describe the structure is used to extract the main structural changes as a function of temperature. The data show that the average structure of BNN is best described by the Ama2 space group, and no other structural phase transitions were observed below the ferroelastic transition. The symmetry mode analysis, combining results from diffraction and density functional theory, shows significant octahedral tilting and corrugations of both the A1 and A2 sites along the c direction. A strong correlation between the spontaneous strain and the octahedral tilting was observed, and a potential connection with emerging microstructure at low temperatures is proposed, all enabled by the symmetry mode approach used in this work.

2.
ACS Omega ; 8(40): 37592-37599, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37841140

ABSTRACT

The dielectric and ferroelectric properties of SrxBa1-xNb2O6 (SBN, 0.2 < x < 0.8) are known to be affected by the Sr fraction and can be further controlled by various quenching schemes. Changes in A-site cation configuration are believed to be linked to these changes in properties. In this work, we study the A-site cation disorder in SBN by the use of high-resolution resonant X-ray powder diffraction. The experimental results show that the larger Ba2+ is found exclusively on the larger A2 site, while Sr2+ is found on both the A1 and A2 sites, with an increasing amount on A2 with an increasing Sr fraction. At elevated temperatures, a small migration of Sr2+ from A1 to A2 is observed for SBN50 and SBN61. Linking this change in occupancies to changes in the average cation size on the A1 and A2 sites allows for rationalization of the property changes observed for quenched samples. Furthermore, SBN25 is shown to deviate from the tetragonal P4bm structure and is found to be orthorhombic with a Cmm2 structure.

3.
J Am Chem Soc ; 145(11): 5991-6006, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36881986

ABSTRACT

The field of high entropy oxides (HEOs) flips traditional materials science paradigms on their head by seeking to understand what properties arise in the presence of profound configurational disorder. This disorder, which originates from multiple elements sharing a single lattice site, can take on a kaleidoscopic character due to the vast numbers of possible elemental combinations. High configurational disorder appears to imbue some HEOs with functional properties that far surpass their nondisordered analogs. While experimental discoveries abound, efforts to characterize the true magnitude of the configurational entropy and understand its role in stabilizing new phases and generating superior functional properties have lagged behind. Understanding the role of configurational disorder in existing HEOs is the crucial link to unlocking the rational design of new HEOs with targeted properties. In this Perspective, we attempt to establish a framework for articulating and beginning to address these questions in pursuit of a deeper understanding of the true role of entropy in HEOs.

4.
Materials (Basel) ; 12(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974734

ABSTRACT

The versatile crystal structure of tetragonal tungsten bronzes (A12A24C4B10O30) can accommodate complex stoichiometries including cations in different valence states and vacant cation sites. Here, we report on the effect of thermally induced cation-vacancy disorder in the tetragonal tungsten bronze SrxBa1-xNb2O6 (SBNX). SBNX (x = 0.25, 0.33, 0.50, 0.61) ceramics, prepared by conventional solid-state synthesis, were annealed at varying temperatures and subsequently quenched to room temperature. The Curie temperature of all the SBNX materials increased with higher quenching temperatures, accompanied with ferroelectric hardening. The variation in thermal history also caused structural changes, specifically a contraction of the a lattice parameter and a minor elongation of the c parameter. These effects are discussed in relation to recent first principles calculations of the energy landscape of the cation-vacancy configurations and experimental evidence of thermally induced cation-vacancy disordering.

SELECTION OF CITATIONS
SEARCH DETAIL
...