Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 142(19): 3707-3714, 2017 Sep 25.
Article in English | MEDLINE | ID: mdl-28849810

ABSTRACT

Cellulose films as well as chitosan-modified cellulose films of approximately 5 µm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 µm thickness) film with a 5, 10, 20, or 40 µm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

2.
ACS Appl Mater Interfaces ; 9(12): 11272-11278, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28287696

ABSTRACT

A thin film of Nafion, of approximately 5 µm thickness, asymmetrically deposited onto a 6 µm thick film of poly(ethylene terephthalate) (PET) fabricated with a 5, 10, 20, or 40 µm microhole, is shown to exhibit prominent ionic diode behavior involving cation charge carrier ("cationic diode"). The phenomenon is characterized via voltammetric, chronoamperometric, and impedance methods. Phenomenologically, current rectification effects are comparable to those observed in nanocone devices where space-charge layer effects dominate. However, for microhole diodes a resistive, a limiting, and an overlimiting potential domain can be identified and concentration polarization in solution is shown to dominate in the closed state.

3.
Langmuir ; 31(46): 12814-22, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26502089

ABSTRACT

A number of renewable energy systems require an understanding and correlation of material properties and photoelectrochemical activity on the micro to nanoscale. Among these, conducting polymer electrodes continue to be important materials. In this contribution, an ultrasensitive scanning electrochemical cell microscopy (SECCM) platform is used to electrodeposit microscale thin films of poly(3-hexylthiophene) (P3HT) on an optically transparent gold electrode and to correlate the morphology (film thickness and structural order) with photoactivity. The electrochemical growth of P3HT begins with a thin ordered film up to 10 nm thick, after which a second more disordered film is deposited, as revealed by micro-Raman spectroscopy. A decrease in photoactivity for the thicker films, measured in situ immediately following film deposition, is attributed to an increase in bulk film disorder that limits charge transport. Higher resolution ex situ SECCM phototransient measurements, using a smaller diameter probe, show local variations in photoactivity within a given deposit. Even after aging, thinner, more ordered regions within a deposit exhibit sustained enhanced photocurrent densities compared to areas where the film is thicker and more disordered. The platform opens up new possibilities for high-throughput combinatorial correlation studies, by allowing materials fabrication and high spatial resolution probing of processes in photoelectrochemical materials.

4.
Anal Chem ; 87(8): 4129-33, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25797893

ABSTRACT

The development of techniques for nanoscale structure-activity correlations is of major importance for the fundamental understanding and rational design of (photo)electrocatalysts. However, the low conversion efficiency of characteristic materials generates tiny photoelectrochemical currents at the submicrometer to nanoscale, in the fA range, which are challenging to detect and measure accurately. Here, we report the coupling of scanning electrochemical cell microscopy (SECCM) with photoillumination, to create a submicrometer spatial resolution cell that opens up high resolution structure-(photo)activity measurements. We demonstrate the capabilities of the technique as a tool for: (i) high spatial resolution (photo)activity mapping using an ionic liquid electrolyte at a thin film of TiO2 aggregates, commonly used as a photoanode in dye sensitized solar cells (DSSCs) and (ii) in situ (photo)activity measurements of an electropolymerized conjugated polymer on a transparent Au substrate in a controlled atmospheric environment. Quantitative data, including localized (photo)electrochemical transients and external quantum efficiency (EQE), are extracted, and prospects for further technique development and enhancement are outlined.


Subject(s)
Electrochemical Techniques , Microscopy, Electrochemical, Scanning , Solar Energy , Electrolytes/chemistry , Gold/chemistry , Ionic Liquids/chemistry , Photochemical Processes , Polymers/chemistry , Titanium/chemistry
5.
Langmuir ; 30(7): 1915-9, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24479903

ABSTRACT

Understanding the relationship between electrochemical activity and electrode structure is vital for improving the efficiency of dye-sensitized solar cells. Here, the reduction of triiodide to iodide in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) room temperature ionic liquid (RTIL) is investigated on polycrystalline platinum using scanning electrochemical cell microscopy (SECCM) and correlated to the crystallographic orientation from electron backscatter diffraction (EBSD). Although the rate determining step in all grains was the first electron transfer, significant grain-dependent variations in activity were revealed, with grains with a dominant (110) crystallographic character exhibiting higher catalytic activity compared to those with a major (100) orientation. The SECCM technique is demonstrated to resolve heterogeneity in activity, highlighting that methods incorporating polycrystalline electrodes miss vital details for understanding and optimizing electrocatalysts. An additional advantage of the SECCM over single-crystal techniques is its ability to probe high index facets.

6.
J Am Chem Soc ; 135(10): 3873-80, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23405963

ABSTRACT

The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing 'pseudo-single-crystal' electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe(2+/3+) couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe(2+) oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale.


Subject(s)
Electrochemical Techniques , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Platinum/chemistry , Polymers/chemistry , Crystallization , Electrodes , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...