Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Article in English | MEDLINE | ID: mdl-37100955

ABSTRACT

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Subject(s)
Apoptosis , Caspases , Animals , Humans , Apoptosis/genetics , Cell Death , Caspases/genetics , Caspases/metabolism , Carcinogenesis , Mammals/metabolism
2.
Cancer Res Commun ; 2(6): 518-532, 2022.
Article in English | MEDLINE | ID: mdl-35911788

ABSTRACT

During the 9/11 attacks individuals were exposed to World Trade Center (WTC) dust which contained a complex mixture of carcinogens. Epidemiological studies have revealed the increased incidence of prostate and thyroid cancer in WTC survivors and responders. While reports have shown that WTC-dust associates with the increased prevalence of inflammatory related disorders, studies to date have not determined whether this exposure impacts cancer progression. In this study, we have used genetically engineered mouse (GEM) models with prostate specific deletion of the PTEN tumor suppressor to study the impact of WTC-dust exposure on deposition of dust particles, inflammation, and cancer progression. In normal C57/BL6 mice, dust exposure increased cellular expression of inflammatory genes with highest levels in the lung and peripheral blood. In normal and tumor bearing GEM mice, increased immune cell infiltration to the lungs was observed. Pathological evaluation of mice at different time points showed that WTC-dust exposure promoted PI3K-AKT activation, increased epithelial proliferation and acinar invasion in prostates with heterozygous and homozygous Pten loss. Using autochthonous and transplant GEM models of prostate cancer we demonstrated that dust exposure caused reduced survival as compared to control cohorts. Finally, we used imaging mass cytometry (IMC) to detect elevated immune cell infiltration and cellular expression of inflammatory markers in prostate tumors isolated from human WTC survivors. Collectively, our study shows that chronic inflammation, induced by WTC dust exposure, promotes more aggressive cancer in genetically predisposed prostates and potentially in patients.


Subject(s)
Lung Diseases , Prostatic Neoplasms , Animals , Humans , Male , Mice , Dust , Inflammation , Phosphatidylinositol 3-Kinases , Prostate , Prostatic Neoplasms/epidemiology , PTEN Phosphohydrolase/genetics
3.
Carcinogenesis ; 43(6): 528-537, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35239955

ABSTRACT

There is increased incidence of prostate cancer (PC) among World Trade Center (WTC)-exposed responders and community members, with preliminary evidence suggestive of more aggressive disease. While previous research is supportive of differences in DNA methylation and gene expression as a consequence of WTC exposure, as measured in blood of healthy individuals, the epigenetics of WTC PC tissues has yet to be explored. Patients were recruited from the World Trade Center Health Program. Non-WTC PC samples were frequency matched on age, race/ethnicity and Gleason score. Bisulfite-treated DNA was extracted from tumor tissue blocks and used to assess global DNA methylation with the MethylationEPIC BeadChip. Differential and pathway enrichment analyses were conducted. RNA from the same tumor blocks was used for gene expression analysis to further support DNA methylation findings. Methylation data were generated for 28 samples (13 WTC and 15 non-WTC). Statistically significant differences in methylation were observed for 3,586 genes; on average WTC samples were statistically significantly more hypermethylated (P = 0.04131). Pathway enrichment analysis revealed hypermethylation in epithelial mesenchymal transition (EMT), hypoxia, mitotic spindle, TNFA signaling via NFKB, WNT signaling, and TGF beta signaling pathways in WTC compared to non-WTC samples. The androgen response, G2M and MYC target pathways were hypomethylated. These results correlated well with RNA gene expression. In conclusion, long-term epigenic changes associated with WTC dust exposure were observed in PC tissues. These occurred in genes of critical pathways, likely increasing prostate tumorigenesis potential. This warrants analysis of larger WTC groups and other cancer types.


Subject(s)
Prostatic Neoplasms , September 11 Terrorist Attacks , DNA Methylation/genetics , Dust , Humans , Male , Prostatic Neoplasms/genetics , RNA
4.
Nat Commun ; 13(1): 703, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121738

ABSTRACT

Rho family mechano-signaling through the actin cytoskeleton positively regulates physiological TEAD/YAP transcription, while the evolutionarily conserved Hippo tumor suppressor pathway antagonizes this transcription through YAP cytoplasmic localization/degradation. The mechanisms responsible for oncogenic dysregulation of these pathways, their prevalence in tumors, as well as how such dysregulation can be therapeutically targeted are not resolved. We demonstrate that p53 DNA contact mutants in human tumors, indirectly hyperactivate RhoA/ROCK1/actomyosin signaling, which is both necessary and sufficient to drive oncogenic TEAD/YAP transcription. Moreover, we demonstrate that recurrent lesions in the Hippo pathway depend on physiological levels of ROCK1/actomyosin signaling for oncogenic TEAD/YAP transcription. Finally, we show that ROCK inhibitors selectively antagonize proliferation and motility of human tumors with either mechanism. Thus, we identify a cancer driver paradigm and a precision medicine approach for selective targeting of human malignancies driven by TEAD/YAP transcription through mechanisms that either upregulate or depend on homeostatic RhoA mechano-signaling.


Subject(s)
Cell Cycle Proteins/genetics , Neoplasms/genetics , Signal Transduction/genetics , TEA Domain Transcription Factors/genetics , Transcription Factors/genetics , rho-Associated Kinases/genetics , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Hippo Signaling Pathway/drug effects , Hippo Signaling Pathway/genetics , Humans , Mice, SCID , Mutation , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , TEA Domain Transcription Factors/metabolism , Transcription Factors/metabolism , Tumor Burden/drug effects , Tumor Burden/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays/methods , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
5.
Blood Adv ; 6(10): 2992-3005, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35042235

ABSTRACT

SF3B1K700E is the most frequent mutation in myelodysplastic syndrome (MDS), but the mechanisms by which it drives MDS pathogenesis remain unclear. We derived a panel of 18 genetically matched SF3B1K700E- and SF3B1WT-induced pluripotent stem cell (iPSC) lines from patients with MDS with ring sideroblasts (MDS-RS) harboring isolated SF3B1K700E mutations and performed RNA and ATAC sequencing in purified CD34+/CD45+ hematopoietic stem/progenitor cells (HSPCs) derived from them. We developed a novel computational framework integrating splicing with transcript usage and gene expression analyses and derived a SF3B1K700E splicing signature consisting of 59 splicing events linked to 34 genes, which associates with the SF3B1 mutational status of primary MDS patient cells. The chromatin landscape of SF3B1K700E HSPCs showed increased priming toward the megakaryocyte- erythroid lineage. Transcription factor motifs enriched in chromatin regions more accessible in SF3B1K700E cells included, unexpectedly, motifs of the TEA domain (TEAD) transcription factor family. TEAD expression and transcriptional activity were upregulated in SF3B1-mutant iPSC-HSPCs, in support of a Hippo pathway-independent role of TEAD as a potential novel transcriptional regulator of SF3B1K700E cells. This study provides a comprehensive characterization of the transcriptional and chromatin landscape of SF3B1K700E HSPCs and nominates novel mis-spliced genes and transcriptional programs with putative roles in MDS-RS disease biology.


Subject(s)
Induced Pluripotent Stem Cells , Myelodysplastic Syndromes , Chromatin/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Transcription Factors/metabolism
6.
Nat Commun ; 12(1): 6889, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824220

ABSTRACT

Inflammatory Breast Cancer (IBC) is a highly aggressive malignancy with distinct clinical and histopathological features whose molecular basis is unresolved. Here we describe a human IBC cell line, A3250, that recapitulates key IBC features in a mouse xenograft model, including skin erythema, diffuse tumor growth, dermal lymphatic invasion, and extensive metastases. A3250 cells express very high levels of the CCL2 chemokine and induce tumors enriched in macrophages. CCL2 knockdown leads to a striking reduction in macrophage densities, tumor proliferation, skin erythema, and metastasis. These results establish IBC-derived CCL2 as a key factor driving macrophage expansion, and indirectly tumor growth, with transcriptomic analysis demonstrating the activation of multiple inflammatory pathways. Finally, primary human IBCs exhibit macrophage infiltration and an enriched macrophage RNA signature. Thus, this human IBC model provides insight into the distinctive biology of IBC, and highlights potential therapeutic approaches to this deadly disease.


Subject(s)
Chemokine CCL2/metabolism , Inflammatory Breast Neoplasms/metabolism , Inflammatory Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Inflammation , Inflammatory Breast Neoplasms/genetics , Inflammatory Breast Neoplasms/immunology , Mice , Mice, SCID , Myeloid Cells/metabolism , Neoplasm Metastasis , Receptors, CCR2/metabolism , Transplantation, Heterologous , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology
7.
Nat Cancer ; 2(4): 429-443, 2021 04.
Article in English | MEDLINE | ID: mdl-34568836

ABSTRACT

CDK4/6 inhibitors (CDK4/6i) are effective in metastatic breast cancer, but they have been only modestly effective in most other tumor types. Here we show that tumors expressing low CDK6 rely on CDK4 function, and are exquisitely sensitive to CDK4/6i. In contrast, tumor cells expressing both CDK4 and CDK6 have increased reliance on CDK6 to ensure cell cycle progression. We discovered that CDK4/6i and CDK4/6 degraders potently bind and inhibit CDK6 selectively in tumors in which CDK6 is highly thermo-unstable and strongly associated with the HSP90/CDC37 complex. In contrast, CDK4/6i and CDK4/6 degraders are ineffective in antagonizing tumor cells expressing thermostable CDK6, due to their weaker binding to CDK6 in these cells. Thus, we uncover a general mechanism of intrinsic resistance to CDK4/6i and CDK4/6i-derived degraders and the need for novel inhibitors targeting the CDK4/6i-resistant, thermostable form of CDK6 for application as cancer therapeutics.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6 , Female , HSP90 Heat-Shock Proteins , Humans
8.
Cancer Discov ; 11(7): 1716-1735, 2021 07.
Article in English | MEDLINE | ID: mdl-33568355

ABSTRACT

Current clinical RAF inhibitors (RAFi) inhibit monomeric BRAF (mBRAF) but are less potent against dimeric BRAF (dBRAF). RAFi equipotent for mBRAF and dBRAF have been developed but are predicted to have lower therapeutic index. Here we identify a third class of RAFi that selectively inhibits dBRAF over mBRAF. Molecular dynamic simulations reveal restriction of the movement of the BRAF αC-helix as the basis of inhibitor selectivity. Combination of inhibitors based on their conformation selectivity (mBRAF- plus dBRAF-selective plus the most potent BRAF-MEK disruptor MEK inhibitor) promoted suppression of tumor growth in BRAFV600E therapy-resistant models. Strikingly, the triple combination showed no toxicities, whereas dBRAF-selective plus MEK inhibitor treatment caused weight loss in mice. Finally, the triple combination achieved durable response and improved clinical well-being in a patient with stage IV colorectal cancer. Thus, exploiting allosteric properties of RAF and MEK inhibitors enables the design of effective and well-tolerated therapies for BRAFV600E tumors. SIGNIFICANCE: This work identifies a new class of RAFi that are selective for dBRAF over mBRAF and determines the basis of their selectivity. A rationally designed combination of RAF and MEK inhibitors based on their conformation selectivity achieved increased efficacy and a high therapeutic index when used to target BRAFV600E tumors.See related commentary by Zhang and Bollag, p. 1620.This article is highlighted in the In This Issue feature, p. 1601.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Melanoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor/drug effects , Colorectal Neoplasms/genetics , Female , Humans , Male , Melanoma/genetics , Mice , Mice, Nude , Middle Aged , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
11.
Mol Cancer Res ; 17(8): 1605-1612, 2019 08.
Article in English | MEDLINE | ID: mdl-31221798

ABSTRACT

An excess incidence of prostate cancer has been identified among World Trade Center (WTC) responders. In this study, we hypothesized that WTC dust, which contained carcinogens and tumor-promoting agents, could facilitate prostate cancer development by inducing DNA damage, promoting cell proliferation, and causing chronic inflammation. We compared expression of immunologic and inflammatory genes using a NanoString assay on archived prostate tumors from WTC Health Program (WTCHP) patients and non-WTC patients with prostate cancer. Furthermore, to assess immediate and delayed responses of prostate tissue to acute WTC dust exposure via intratracheal inhalation, we performed RNA-seq on the prostate of normal rats that were exposed to moderate to high doses of WTC dust. WTC prostate cancer cases showed significant upregulation of genes involved in DNA damage and G2-M arrest. Cell-type enrichment analysis showed that Th17 cells, a subset of proinflammatory Th cells, were specifically upregulated in WTC patients. In rats exposed to WTC dust, we observed upregulation of gene transcripts of cell types involved in both adaptive immune response (dendritic cells and B cells) and inflammatory response (Th17 cells) in the prostate. Unexpectedly, genes in the cholesterol biosynthesis pathway were also significantly upregulated 30 days after acute dust exposure. Our results suggest that respiratory exposure to WTC dust can induce inflammatory and immune responses in prostate tissue. IMPLICATIONS: WTC-related prostate cancer displayed a distinct gene expression pattern that could be the result of exposure to specific carcinogens. Our data warrant further epidemiologic and cellular mechanistic studies to better understand the consequences of WTC dust exposure.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/8/1605/F1.large.jpg.


Subject(s)
Dust/analysis , Environmental Pollutants/adverse effects , Inflammation/complications , Occupational Exposure/adverse effects , Prostatic Neoplasms/diagnosis , Transcriptome/drug effects , Animals , Humans , Inflammation/chemically induced , Male , Middle Aged , Prostatic Neoplasms/etiology , Rats , September 11 Terrorist Attacks/statistics & numerical data
12.
Cell Rep ; 26(1): 65-78.e5, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30605687

ABSTRACT

Pharmacologic targeting of components of ERK signaling in ERK-dependent tumors is often limited by adaptive resistance, frequently mediated by feedback-activation of RTK signaling and rebound of ERK activity. Here, we show that combinatorial pharmacologic targeting of ERK signaling and the SHP2 phosphatase prevents adaptive resistance in defined subsets of ERK-dependent tumors. In each tumor that was sensitive to combined treatment, p(Y542)SHP2 induction was observed in response to ERK signaling inhibition. The strategy was broadly effective in TNBC models and tumors with RAS mutations at G12, whereas tumors with RAS(G13D) or RAS(Q61X) mutations were resistant. In addition, we identified a subset of BRAF(V600E) tumors that were resistant to the combined treatment, in which FGFR was found to drive feedback-induced RAS activation, independently of SHP2. Thus, we identify molecular determinants of response to combined ERK signaling and SHP2 inhibition in ERK-dependent tumors.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/drug effects , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Animals , Cell Line, Tumor , Colonic Neoplasms , Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Female , HEK293 Cells , HT29 Cells , HeLa Cells , Humans , Mice , Mice, Nude , Piperidines/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyrimidines/pharmacology , Signal Transduction , Xenograft Model Antitumor Assays
14.
Nat Commun ; 9(1): 5304, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30546012

ABSTRACT

Wnt/Wg-signalling is critical signalling in all metazoans. Recent studies suggest that IFT-A proteins and Kinesin-2 modulate canonical Wnt/Wg-signalling independently of their ciliary role. Whether they function together in Wnt-signalling and their mechanistic role in the pathway remained unresolved. Here we demonstrate that Kinesin-2 and IFT-A proteins act as a complex during Drosophila Wg-signalling, affecting pathway activity in the same manner, interacting genetically and physically, and co-localizing with ß-catenin, the mediator of Wnt/Wg-signalling on microtubules. Following pathway activation, Kinesin-2/IFT-A mutant cells exhibit high cytoplasmic ß-catenin levels, yet fail to activate Wg-targets. In mutant tissues in both, Drosophila and mouse/MEFs, nuclear localization of ß-catenin is markedly reduced. We demonstrate a conserved, motor-domain dependent function of the Kinesin-2/IFT-A complex in promoting nuclear translocation of ß-catenin. We show that this is mediated by protecting ß-catenin from a conserved cytoplasmic retention process, thus identifying a mechanism for Kinesin-2/IFT-A in Wnt-signalling that is independent of their ciliary role.


Subject(s)
Armadillo Domain Proteins/metabolism , Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/embryology , Kinesins/metabolism , Wings, Animal/embryology , Wnt Proteins/metabolism , beta Catenin/metabolism , Active Transport, Cell Nucleus/genetics , Active Transport, Cell Nucleus/physiology , Animals , Carrier Proteins/genetics , Cell Nucleus/metabolism , Drosophila Proteins/genetics , Kinesins/genetics , Protein Transport/physiology , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction/physiology , Wnt Signaling Pathway/physiology
15.
J Clin Invest ; 128(12): 5647-5662, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30352428

ABSTRACT

Tumor-associated myeloid cells maintain immunosuppressive microenvironments within tumors. Identification of myeloid-specific receptors to modulate tumor-associated macrophage and myeloid-derived suppressor cell (MDSC) functions remains challenging. The leukocyte immunoglobulin-like receptor B (LILRB) family members are negative regulators of myeloid cell activation. We investigated how LILRB targeting could modulate tumor-associated myeloid cell function. LILRB2 antagonism inhibited receptor-mediated activation of SHP1/2 and enhanced proinflammatory responses. LILRB2 antagonism also inhibited AKT and STAT6 activation in the presence of M-CSF and IL-4. Transcriptome analysis revealed that LILRB2 antagonism altered genes involved in cell cytoskeleton remodeling, lipid/cholesterol metabolism, and endosomal sorting pathways, as well as changed differentiation gene networks associated with inflammatory myeloid cells as opposed to their alternatively activated phenotype. LILRB2 blockade effectively suppressed granulocytic MDSC and Treg infiltration and significantly promoted in vivo antitumor effects of T cell immune checkpoint inhibitors. Furthermore, LILRB2 blockade polarized tumor-infiltrating myeloid cells from non-small cell lung carcinoma tumor tissues toward an inflammatory phenotype. Our studies suggest that LILRB2 can potentially act as a myeloid immune checkpoint by reprogramming tumor-associated myeloid cells and provoking antitumor immunity.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasm Proteins/immunology , Receptors, Immunologic/immunology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Cytoskeleton/genetics , Cytoskeleton/immunology , Cytoskeleton/pathology , Gene Regulatory Networks/immunology , Lipid Metabolism/genetics , Lipid Metabolism/immunology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Myeloid-Derived Suppressor Cells/pathology , Neoplasm Proteins/genetics , Receptors, Immunologic/genetics
16.
J Immunol ; 201(6): 1727-1734, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30068593

ABSTRACT

Glatiramer acetate (GA; Copaxone) is a copolymer therapeutic that is approved by the Food and Drug Administration for the relapsing-remitting form of multiple sclerosis. Despite an unclear mechanism of action, studies have shown that GA promotes protective Th2 immunity and stimulates release of cytokines that suppress autoimmunity. In this study, we demonstrate that GA interacts with murine paired Ig-like receptor B (PIR-B) on myeloid-derived suppressor cells and suppresses the STAT1/NF-κB pathways while promoting IL-10/TGF-ß cytokine release. In inflammatory bowel disease models, GA enhanced myeloid-derived suppressor cell-dependent CD4+ regulatory T cell generation while reducing proinflammatory cytokine secretion. Human monocyte-derived macrophages responded to GA by reducing TNF-α production and promoting CD163 expression typical of alternative maturation despite the presence of GM-CSF. Furthermore, GA competitively interacts with leukocyte Ig-like receptors B (LILRBs), the human orthologs of PIR-B. Because GA limited proinflammatory activation of myeloid cells, therapeutics that target LILRBs represent novel treatment modalities for autoimmune indications.


Subject(s)
Antigens, CD/immunology , Glatiramer Acetate/pharmacology , Myeloid-Derived Suppressor Cells/immunology , Receptors, Immunologic/immunology , Animals , Antigens, CD/genetics , Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cytokines/genetics , Cytokines/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Myeloid-Derived Suppressor Cells/pathology , NF-kappa B/genetics , NF-kappa B/immunology , Receptors, Immunologic/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th2 Cells/immunology , Th2 Cells/pathology
17.
Cell Death Differ ; 25(3): 486-541, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29362479

ABSTRACT

Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.


Subject(s)
Cell Death , Animals , Humans , Lysosomes/metabolism , Lysosomes/pathology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Necrosis/metabolism , Necrosis/pathology
18.
Genes Cancer ; 8(7-8): 613-627, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28966723

ABSTRACT

The LOW-density lipoprotein related protein 6 (LRP6) receptor is an important effector of canonical Wnt signaling, a developmental pathway, whose dysregulation has been implicated in various diseases including cancer. The membrane proximal low-density lipoprotein (LDL) receptor repeats in LRP6 exhibit homology to ligand binding repeats in the LDL receptor (LDLR), but lack known function. We generated single amino acid substitutions of LRP6-LDLR repeat residues, which are highly conserved in the human LDLR and mutated in patients with Familial Hypercholesteremia (FH). These substitutions negatively impacted LRP6 internalization and activation of Wnt signaling. By mass spectrometry, we observed that the Itch E3 ubiquitin ligase associated with and ubiquitinated wild type LRP6 but not the LDLR repeat mutants. These findings establish the involvement of LRP6-LDLR repeats in the regulation of canonical Wnt signaling.

19.
Mol Cancer Res ; 15(8): 1051-1062, 2017 08.
Article in English | MEDLINE | ID: mdl-28483946

ABSTRACT

TP53 is the most commonly mutated tumor suppressor gene and its mutation drives tumorigenesis. Using ChIP-seq for p53 in the absence of acute cell stress, we found that wild-type but not mutant p53 binds and activates numerous tumor suppressor genes, including PTEN, STK11(LKB1), miR-34a, KDM6A(UTX), FOXO1, PHLDA3, and TNFRSF10B through consensus binding sites in enhancers and promoters. Depletion of p53 reduced expression of these target genes, and analysis across 18 tumor types showed that mutation of TP53 associated with reduced expression of many of these genes. Regarding PTEN, p53 activated expression of a luciferase reporter gene containing the p53-consensus site in the PTEN enhancer, and homozygous deletion of this region in cells decreased PTEN expression and increased growth and transformation. These findings show that p53 maintains expression of a team of tumor suppressor genes that may together with the stress-induced targets mediate the ability of p53 to suppress cancer development. p53 mutations selected during tumor initiation and progression, thus, inactivate multiple tumor suppressor genes in parallel, which could account for the high frequency of p53 mutations in cancer.Implications: In this study, we investigate the activities of p53 under normal low-stress conditions and discover that p53 is capable of maintaining the expression of a group of important tumor suppressor genes at baseline, many of which are haploinsufficient, which could contribute to p53-mediated tumor suppression. Mol Cancer Res; 15(8); 1051-62. ©2017 AACR.


Subject(s)
Cell Transformation, Neoplastic/genetics , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , AMP-Activated Protein Kinase Kinases , Binding Sites/genetics , Cell Line, Tumor , Forkhead Box Protein O1/genetics , Gene Expression Regulation, Neoplastic , Haploinsufficiency/genetics , Histone Demethylases/genetics , Humans , MicroRNAs/genetics , Mutation , Neoplasms/pathology , Nuclear Proteins/genetics , PTEN Phosphohydrolase/genetics , Protein Binding , Protein Serine-Threonine Kinases/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...