Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 225(4): 977-89, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17013613

ABSTRACT

Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype.


Subject(s)
Thlaspi/genetics , Zinc/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amino Acid Sequence , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Metallothionein/genetics , Metallothionein/metabolism , Molecular Sequence Data , Plant Shoots/metabolism , Thlaspi/enzymology , Thlaspi/metabolism
2.
Theor Appl Genet ; 113(5): 907-20, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16850314

ABSTRACT

Thlaspi caerulescens (Tc; 2n = 14) is a natural Zn, Cd and Ni hyperaccumulator species belonging to the Brassicaceae family. It shares 88% DNA identity in the coding regions with Arabidopsis thaliana (At) (Rigola et al. 2006). Although the physiology of heavy metal (hyper)accumulation has been intensively studied, the molecular genetics are still largely unexplored. We address this topic by constructing a genetic map based on AFLP markers and expressed sequence tags (ESTs). To establish a genetic map, an F(2) population of 129 individuals was generated from a cross between a plant from a Pb/Cd/Zn-contaminated site near La Calamine, Belgium, and a plant from a comparable site near Ganges (GA), France. These two accessions show different degrees of Zn and, particularly, Cd accumulation. We analyzed 181 AFLP markers (of which 4 co-dominant) and 13 co-dominant EST sequences-based markers and mapped them to seven linkage groups (LGs), presumably corresponding to the seven chromosomes of T. caerulescens. The total length of the genetic map is 496 cM with an average density of one marker every 2.5 cM. This map was used for Quantitative Trait Locus (QTL) mapping in the F(2). For Zn as well as Cd concentration in root we mapped two QTLs. Three QTLs and one QTL were mapped for Zn and Cd concentration in shoot, respectively. These QTLs explain 23.8-60.4% of the total variance of the traits measured. We found only one common locus (LG6) for Zn and Cd (concentration in root) and one common locus for shoot and root concentrations of Zn (LG1) and of Cd (LG3). For all QTLs, the GA allele increased the trait value except for two QTLs for Zn accumulation in shoot (LG1 and LG4) and one for Zn concentration in root (LG1).


Subject(s)
Cadmium/metabolism , Genetic Linkage , Quantitative Trait Loci/genetics , Thlaspi/genetics , Zinc/metabolism , Chromosome Mapping , Expressed Sequence Tags , Genetic Markers , Genotype , Phenotype , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...