Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Occup Environ Hyg ; 20(10): 460-467, 2023 10.
Article in English | MEDLINE | ID: mdl-37526465

ABSTRACT

Workers on offshore petroleum installations might be exposed to benzene, a carcinogenic agent. Recently, a full-shift benzene exposure model was developed based on personal measurements. This study aimed to validate this exposure model by using datasets not included in the model. The exposure model was validated against an internal dataset of measurements from offshore installations owned by the same company that provided data for the model, and an external dataset from installations owned by another company. We used Tobit regression to estimate GM (geometric mean) benzene exposure overall and for individual job groups. Bias, relative bias, precision, and correlation were estimated to evaluate the agreement between measured exposures and the levels predicted by the model. Overall, the model overestimated exposure when compared to the predicted exposure level to the internal dataset with a factor of 1.7, a relative bias of 73%, a precision of 0.6, a correlation coefficient of 0.72 (p = 0.019), while the Lin's Concordance Correlation Coefficient (CCC) was 0.53. The model underestimated exposure when compared to the external dataset with a factor of about 2, with a relative bias of -45%, a precision of 1.2, a correlation coefficient of 0.31 (p = 0.544), and a Lin's CCC of 0.25. The exposure model overestimated benzene exposure in the internal validation dataset, while the precision and the correlation between the measured and predicted exposure levels were high. Differences in measurement strategies could be one of the reasons for the discrepancy. The exposure model agreed less with the external dataset.


Subject(s)
Occupational Exposure , Petroleum , Humans , Benzene , Carcinogenesis , Carcinogens
2.
Ann Work Expo Health ; 67(2): 228-240, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36269106

ABSTRACT

OBJECTIVES: Work on offshore petroleum installations may cause exposure to benzene. Benzene is a carcinogenic agent, and exposure among workers should be as low as reasonably practicable. We aimed to assess short-term (less than 60 min) benzene exposure from the most frequent work tasks on offshore installations on the Norwegian continental shelf and identify determinants of exposure. In addition, we aimed to assess the time trend in task-based benzene measurements from 2002 to 2018. METHODS: The study included 763 task-based measurements with a sampling duration of less than 60 min, collected on 28 offshore installations from 2002 to 2018. The measurements were categorized into 10 different tasks. Multilevel mixed-effect Tobit regression models were developed for two tasks: sampling and disassembling/assembling equipment. Benzene source, season, indoors or outdoors, design of process area, year of production start, sampling method, and work operation were considered as potential determinants for benzene exposure in the models. RESULTS: The overall geometric mean (GM) benzene exposure was 0.02 ppm (95% confidence intervals 95%(CI: 0.01-0.04). The pipeline inspection gauge (PIG) operation task was associated with the highest exposure, with a GM of 0.33 ppm, followed by work on flotation cells, disassembling/assembling, and sampling, with GMs of 0.16, 0.04, and 0.01 ppm, respectively. Significant determinants for the disassembling/assembling task were work operation (changing or recertifying valves, changing or cleaning filters, and breaking pipes) and benzene source. For sampling, the benzene source was a significant determinant. Overall, the task-based benzene exposure declined annually by 10.2% (CI 95%: -17.4 to -2.4%) from 2002 to 2018. CONCLUSIONS: The PIG operation task was associated with the highest exposure out of the ten tasks, followed by work on flotation cells and when performing disassembling/assembling of equipment. The exposure was associated with the type of benzene source that was worked on. Despite the decline in task-based exposure in 2002-2018, technical measures should still be considered in order to reduce the exposure.


Subject(s)
Occupational Exposure , Petroleum , Benzene/analysis , Occupational Exposure/analysis , Carcinogens , Norway
SELECTION OF CITATIONS
SEARCH DETAIL
...