Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(6): e0268806, 2022.
Article in English | MEDLINE | ID: mdl-35687549

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impose a serious burden on health systems globally. Despite worldwide vaccination, social distancing and wearing masks, the spread of the virus is ongoing. One of the mechanisms by which neutralizing antibodies (NAbs) block virus entry into cells encompasses interaction inhibition between the cell surface receptor angiotensin-converting enzyme 2 (ACE2) and the spike (S) protein of SARS-CoV-2. SARS-CoV-2-specific NAb development can be induced in the blood of cattle. Pregnant cows produce NAbs upon immunization, and antibodies move into the colostrum immediately before calving. Here, we immunized cows with SARS-CoV-2 S1 receptor binding domain (RBD) protein in proper adjuvant solutions, followed by one boost with SARS-CoV-2 trimeric S protein and purified immunoglobulins from colostrum. We demonstrate that this preparation indeed blocks the interaction between the trimeric S protein and ACE2 in different in vitro assays. Moreover, we describe the formulation of purified immunoglobulin preparation into a nasal spray. When administered to human subjects, the formulation persisted on the nasal mucosa for at least 4 hours, as determined by a clinical study. Therefore, we are presenting a solution that shows great potential to serve as a prophylactic agent against SARS-CoV-2 infection as an additional measure to vaccination and wearing masks. Moreover, our technology allows for rapid and versatile adaptation for preparing prophylactic treatments against other diseases using the defined characteristics of antibody movement into the colostrum.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cattle , Colostrum/metabolism , Female , Humans , Pregnancy , Spike Glycoprotein, Coronavirus
2.
Front Microbiol ; 13: 838490, 2022.
Article in English | MEDLINE | ID: mdl-35464909

ABSTRACT

The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others' experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values.

3.
Acta Vet Scand ; 61(1): 5, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30665443

ABSTRACT

BACKGROUND: The prevalence of resistant Escherichia coli and Enterococcus spp. in food-producing animals has increased worldwide. The objective of the study was to investigate the occurrence of antimicrobial resistance of Escherichia coli, Enterococcus faecium and Enterococcus faecalis isolated from healthy and diseased swine and cattle in Estonia. Clinical specimen and faecal samples were collected during 2010 to 2015. The in vitro antimicrobial susceptibility was determined using the microdilution method. RESULTS: The most prevalent resistance of E. coli isolates from clinically healthy swine was observed against streptomycin (39.2%), tetracycline (32.5%) and sulfamethoxazole (30.0%), whereas in clinically healthy cattle, the resistance was the highest against aminoglycosides (7.0-8.8%) and tetracycline (7.0%). The E. coli isolates from clinically healthy swine showed significantly higher multidrug-resistance compared to isolates originated from clinically healthy cattle. E. coli isolates from diseased swine showed highest resistance to sulfamethoxazole (68.6%), tetracycline (60.2%) and streptomycin (54.6%). The proportion of resistant E. coli isolates from diseased cattle (clinical submissions) was highest to streptomycin (63.5%), sulfamethoxazole (60.3%) and tetracycline (58.8%). The proportion of multidrug-resistant isolates did not differ significantly between animal species. Among E. coli isolates, four strains representing AmpC phenotypes were found. One plasmid-encoded AmpC type ß-lactamases producing E. coli from clinically healthy cattle was found to harbour the blaCMY-1 gene, and another from clinically healthy swine carried the blaCMY-2 gene. Among nine E. coli strains exhibiting an ESBL phenotype three strains was found to be the same genotype blaTEM-52C. Enterococci from healthy swine and cattle showed high resistance to tetracycline and erythromycin. Regarding enterococci, the number of multidrug-resistant strains was significantly higher in swine isolates compared to isolates originated from cattle. CONCLUSIONS: The antimicrobial resistance of E. coli isolates was high in both Estonian swine and cattle. However, swine isolates, especially E. coli from healthy swine, had developed a higher level of resistance. The amount of multidrug-resistant E. coli isolates was also significantly higher in clinically healthy swine compared to that in cattle.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cattle Diseases/microbiology , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Escherichia coli/drug effects , Swine Diseases/microbiology , Animals , Anti-Bacterial Agents/therapeutic use , Cattle , Drug Resistance, Bacterial , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Estonia , Female , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/veterinary , Male , Microbial Sensitivity Tests/veterinary , Swine
4.
Acta Vet Scand ; 53: 4, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21299911

ABSTRACT

BACKGROUND: The goal of this study was to estimate the distribution of udder pathogens and their antibiotic resistance in Estonia during the years 2007-2009. METHODS: The bacteriological findings reported in this study originate from quarter milk samples collected from cows on Estonian dairy farms that had clinical or subclinical mastitis. The samples were submitted by local veterinarians to the Estonian Veterinary and Food Laboratory during 2007-2009. Milk samples were examined by conventional bacteriology. In vitro antimicrobial susceptibility testing was performed with the disc diffusion test. Logistic regression with a random herd effect to control for clustering was used for statistical analysis. RESULTS: During the study period, 3058 clinical mastitis samples from 190 farms and 5146 subclinical mastitis samples from 274 farms were investigated. Positive results were found in 57% of the samples (4680 out of 8204), and the proportion did not differ according to year (p > 0.05). The proportion of bacteriologically negative samples was 22.3% and that of mixed growth was 20.6%. Streptococcus uberis (Str. uberis) was the bacterium isolated most frequently (18.4%) from cases of clinical mastitis, followed by Escherichia coli (E. coli) (15.9%) and Streptococcus agalactiae (Str. agalactiae) (11.9%). The bacteria that caused subclinical mastitis were mainly Staphylococcus aureus (S. aureus) (20%) and coagulase-negative staphylococci (CNS) (15.4%). The probability of isolating S. aureus from milk samples was significantly higher on farms that had fewer than 30 cows, when compared with farms that had more than 100 cows (p < 0.005). A significantly higher risk of Str. agalactiae infection was found on farms with more than 600 cows (p = 0.034) compared with smaller farms. The proportion of S. aureus and CNS isolates that were resistant to penicillin was 61.4% and 38.5%, respectively. Among the E. coli isolates, ampicillin, streptomycin and tetracycline resistance were observed in 24.3%, 15.6% and 13.5%, respectively. CONCLUSIONS: This study showed that the main pathogens associated with clinical mastitis were Str. uberis and E. coli. Subclinical mastitis was caused mainly by S. aureus and CNS. The number of S. aureus and Str. agalactiae isolates depended on herd size. Antimicrobial resistance was highly prevalent, especially penicillin resistance in S. aureus and CNS.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dairying , Drug Resistance, Bacterial , Mammary Glands, Animal/microbiology , Mastitis, Bovine/microbiology , Animals , Cattle , Estonia/epidemiology , Female , Mastitis, Bovine/epidemiology
5.
Acta Vet Scand ; 48: 21, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17118174

ABSTRACT

BACKGROUND: Objectives of the study were to document the impact of some management factors on the occurrence of clinical mastitis in primiparous dairy cows and to identify common udder pathogens of clinical mastitis in freshly calved heifers and multiparous cows on the day of calving. METHODS: A one-year study was conducted during 2004 and 2005 in 11 selected Estonian dairy herds. Data consisted of 68 heifers with clinical mastitis and 995 heifers without clinical mastitis on the day of calving. Multivariable logistic regression with a random herd effect was used to investigate any association between housing system or the time interval from movement of heifers to the calving facility and day of calving on occurrence of clinical mastitis. Milk samples for bacteriological analysis were collected from affected heifers and multiparous cows on the day of calving RESULTS: Clinical mastitis occurrence in the study population of freshly calved heifers equalled 6.1 %. Housing system was not a significant risk factor for clinical mastitis of freshly calved heifers. Moving heifers to the cowbarn less than two weeks before calving in tiestall farms increased risk (OR = 5.9 p = 0.001) for clinical mastitis at parturition. The most frequently isolated udder pathogens among heifers were Escherichia coli (22.1%), Streptococcus uberis (19.1%) and coagulase-negative staphylococci (8.8%). In comparison, the main pathogen in multiparous cows with clinical mastitis at parturition was Staphylococcus aureus (11.2%). CONCLUSION: Moving heifers to the calving facilities too late in tiestall farms increased risk for clinical mastitis at parturition. The isolated udder pathogens did not differ significantly in tiestall farms compared to freestall farms in heifers, but differences were found between heifers and multiparous cows at parturition.


Subject(s)
Corynebacterium/isolation & purification , Housing, Animal , Mastitis, Bovine/epidemiology , Milk/microbiology , Staphylococcus aureus/isolation & purification , Animals , Cattle , Estonia/epidemiology , Female , Mastitis, Bovine/diagnosis , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...