Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 9(6): 1499-1512, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548922

ABSTRACT

Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.


Subject(s)
Apolipoproteins E , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Receptors, LDL , Virus Internalization , Animals , Humans , Mice , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Hemorrhagic Fever, Crimean/virology , Hemorrhagic Fever, Crimean/metabolism , Mice, Knockout , Receptors, LDL/metabolism , Receptors, LDL/genetics , Receptors, Virus/metabolism , Ticks/virology , Ticks/metabolism
2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069027

ABSTRACT

Rapid and accurate serological analysis of SARS-CoV-2 antibodies is important for assessing immune protection from vaccination or infection of individuals and for projecting virus spread within a population. The quartz crystal microbalance (QCM) is a label-free flow-based sensor platform that offers an opportunity to detect the binding of a fluid-phase ligand to an immobilized target molecule in real time. A QCM-based assay was developed for the detection of SARS-CoV-2 antibody binding and evaluated for assay reproducibility. The assay was cross-compared to the Roche electrochemiluminescence assay (ECLIA) Elecsys® Anti-SARS-CoV-2 serology test kit and YHLO's chemiluminescence immunoassay (CLIA). The day-to-day reproducibility of the assay had a correlation of r2 = 0.99, p < 0.001. The assay linearity was r2 = 0.96, p < 0.001, for dilution in both serum and buffer. In the cross-comparison analysis of 119 human serum samples, 59 were positive in the Roche, 52 in the YHLO, and 48 in the QCM immunoassay. Despite differences in the detection method and antigen used for antibody capture, there was good coherence between the assays, 80-100% for positive and 96-100% for negative test results. In summation, the QCM-based SARS-CoV-2 IgG immunoassay showed high reproducibility and linearity, along with good coherence with the ELISA-based assays. Still, factors including antibody titer and antigen-binding affinity may differentially affect the various assays' responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Quartz Crystal Microbalance Techniques , Reproducibility of Results , Immunoassay/methods , Antibodies, Viral , Sensitivity and Specificity
3.
JACS Au ; 3(6): 1623-1633, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37388690

ABSTRACT

Conjugation of biomolecules on the surface of nanoparticles (NPs) to achieve active targeting is widely investigated within the scientific community. However, while a basic framework of the physicochemical processes underpinning bionanoparticle recognition is now emerging, the precise evaluation of the interactions between engineered NPs and biological targets remains underdeveloped. Here, we show how the adaptation of a method currently used to evaluate molecular ligand-receptor interactions by quartz crystal microbalance (QCM) can be used to obtain concrete insights into interactions between different NP architectures and assemblies of receptors. Using a model bionanoparticle grafted with oriented apolipoprotein E (ApoE) fragments, we examine key aspects of bionanoparticle engineering for effective interactions with target receptors. We show that the QCM technique can be used to rapidly measure construct-receptor interactions across biologically relevant exchange times. We contrast random adsorption of the ligand at the surface of the NPs, resulting in no measurable interaction with target receptors, to grafted oriented constructs, which are strongly recognized even at lower graft densities. The effects of other basic parameters impacting the interaction such as ligand graft density, receptor immobilization density, and linker length were also efficiently evaluated with this technique. Dramatic changes in interaction outcomes with subtle alterations in these parameters highlight the general importance of measuring the interactions between engineered NPs and target receptors ex situ early on in the construct development process for the rational design of bionanoparticles.

4.
Chem Commun (Camb) ; 58(99): 13731-13734, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36444745

ABSTRACT

Real-time detection of glycosylation on label-free cancer cell surfaces is of significance for the diagnosis and treatment of cancer. In this work, we have successfully developed a novel dynamic reversible sensor based on pH-sensitive phenylboronic esters to determine in real-time the binding kinetics of protein-carbohydrate interactions on suspension cancer cell surfaces using a quartz crystal microbalance (QCM) technique.


Subject(s)
Biosensing Techniques , Neoplasms , Quartz Crystal Microbalance Techniques/methods , Boronic Acids , Kinetics , Carbohydrates/chemistry
5.
Cells ; 11(17)2022 08 29.
Article in English | MEDLINE | ID: mdl-36078092

ABSTRACT

The plasma protein histidine-rich glycoprotein (HRG) is implicated in the polarization of macrophages to an M1 antitumoral phenotype. The broadly expressed secreted protein stanniocalcin 2 (STC2), also implicated in tumor inflammation, is an HRG interaction partner. With the aim to biochemically characterize the HRG and STC2 complex, binding of recombinant HRG and STC2 preparations to each other and to cells was explored using the quartz crystal microbalance (QCM) methodology. The functionality of recombinant proteins was tested in a phagocytosis assay, where HRG increased phagocytosis by monocytic U937 cells while STC2 suppressed HRG-induced phagocytosis. The binding of HRG to STC2, measured using QCM, showed an affinity between the proteins in the nanomolar range, and both HRG and STC2 bound individually and in combination to vitamin D3-treated, differentiated U937 monocytes. HRG, but not STC2, also bound to formaldehyde-fixed U937 cells irrespective of their differentiation stage in part through the interaction with heparan sulfate. These data show that HRG and STC2 bind to each other as well as to U937 monocytes with high affinity, supporting the relevance of these interactions in monocyte/macrophage polarity.


Subject(s)
Glycoproteins , Quartz Crystal Microbalance Techniques , Glycoproteins/metabolism , Heparitin Sulfate/metabolism , Proteins
6.
Int J Mol Sci ; 23(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269677

ABSTRACT

Oxytocin imprinted polymer nanoparticles were synthesized by glass bead supported solid phase synthesis, with NMR and molecular dynamics studies used to investigate monomer-template interactions. The nanoparticles were characterized by dynamic light scattering, scanning- and transmission electron microscopy and X-ray photoelectron spectroscopy. Investigation of nanoparticle-template recognition using quartz crystal microbalance-based studies revealed sub-nanomolar affinity, kd ≈ 0.3 ± 0.02 nM (standard error of the mean), comparable to that of commercial polyclonal antibodies, kd ≈ 0.02-0.2 nM.


Subject(s)
Molecular Imprinting , Antibodies , Molecular Imprinting/methods , Nanogels , Oxytocin , Polyethylene Glycols , Polyethyleneimine , Polymers/chemistry , Quartz Crystal Microbalance Techniques/methods
7.
Int J Mol Sci ; 20(23)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801200

ABSTRACT

Paracrine factors can induce cardiac regeneration and repair post myocardial infarction by stimulating proliferation of cardiac cells and inducing the anti-fibrotic, antiapoptotic, and immunomodulatory effects of angiogenesis. Here, we screened a human secretome library, consisting of 923 growth factors, cytokines, and proteins with unknown function, in a phenotypic screen with human cardiac progenitor cells. The primary readout in the screen was proliferation measured by nuclear count. From this screen, we identified FGF1, FGF4, FGF9, FGF16, FGF18, and seven additional proteins that induce proliferation of cardiac progenitor cells. FGF9 and FGF16 belong to the same FGF subfamily, share high sequence identity, and are described to have similar receptor preferences. Interestingly, FGF16 was shown to be specific for proliferation of cardiac progenitor cells, whereas FGF9 also proliferated human cardiac fibroblasts. Biosensor analysis of receptor preferences and quantification of receptor abundances suggested that FGF16 and FGF9 bind to different FGF receptors on the cardiac progenitor cells and cardiac fibroblasts. FGF16 also proliferated naïve cardiac progenitor cells isolated from mouse heart and human cardiomyocytes derived from induced pluripotent cells. Taken together, the data suggest that FGF16 could be a suitable paracrine factor to induce cardiac regeneration and repair.


Subject(s)
Cell Proliferation/drug effects , Fibroblast Growth Factors/genetics , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Animals , CHO Cells , Cell Differentiation/drug effects , Cricetulus , Female , Fibroblast Growth Factors/classification , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Gene Library , High-Throughput Screening Assays , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Primary Cell Culture
8.
Langmuir ; 35(48): 15692-15700, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31581771

ABSTRACT

The quartz crystal microbalance (QCM) has been used to study how the interfacial layer of an ionic liquid dissolved in a polar oil at low weight percentages responds to changes in applied potential. The changes in surface composition at the QCM gold surface depend on both the magnitude and sign of the applied potential. The time-resolved response indicates that the relaxation kinetics are limited by the diffusion of ions in the interfacial region and not in the bulk, since there is no concentration dependence. The measured mass changes cannot be explained only in terms of simple ion exchange; the relative molecular volumes of the ions and the density changes in response to ion exclusion must be considered. The relaxation behavior of the potential between the electrodes upon disconnecting the applied potential is more complex than that observed for pure ionic liquids, but a measure of the surface charge can be extracted from the exponential decay when the rapid initial potential drop is accounted for. The adsorbed film at the gold surface consists predominantly of ionic liquid despite the low concentration, which is unsurprising given the surtactant-like structures of (some of) the ionic liquid ions. Changes in response to potential correspond to changes in the relative numbers of cations and anions, rather than a change in the oil composition. No evidence for an electric field induced change in viscosity is observed. This work shows conclusively that electric potentials can be used to control the surface composition, even in an oil-based system, and paves the way for other ion solvent studies.

9.
Biosens Bioelectron ; 139: 111328, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31136921

ABSTRACT

Quartz crystal microbalance (QCM) methodology has been adopted to unravel important factors contributing to the "cluster glycoside effect" observed in carbohydrate-lectin interactions. Well-defined, glycosylated nanostructures of precise sizes, geometries and functionalization patterns were designed and synthesized, and applied to analysis of the interaction kinetics and thermodynamics with immobilized lectins. The nanostructures were based on Borromean rings, dodecaamine cages, and fullerenes, each of which carrying a defined number of carbohydrate ligands at precise locations. The synthesis of the Borromeates and dodecaamine cages was easily adjustable due to the modular assembly of the structures, resulting in variations in presentation mode. The binding properties of the glycosylated nanoplatforms were evaluated using flow-through QCM technology, as well as hemagglutination inhibition assays, and compared with dodecaglycosylated fullerenes and a monovalent reference. With the QCM setup, the association and dissociation rate constants and the associated equilibrium constants of the interactions could be estimated, and the results used to delineate the multivalency effects of the lectin-nanostructure interactions.


Subject(s)
Biosensing Techniques , Lectins/chemistry , Quartz Crystal Microbalance Techniques , Surface Plasmon Resonance , Carbohydrates/chemistry , Concanavalin A/chemistry , Glycosylation , Ligands , Nanostructures/chemistry , Protein Binding
10.
Nat Commun ; 10(1): 365, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30664649

ABSTRACT

Wnt-induced ß-catenin-mediated transcription is a driving force for stem cell self-renewal during adult tissue homeostasis. Enhanced Wnt receptor expression due to mutational inactivation of the ubiquitin ligases RNF43/ZNRF3 recently emerged as a leading cause for cancer development. Consequently, targeting canonical Wnt receptors such as LRP5/6 holds great promise for treatment of such cancer subsets. Here, we employ CIS display technology to identify single-domain antibody fragments (VHH) that bind the LRP6 P3E3P4E4 region with nanomolar affinity and strongly inhibit Wnt3/3a-induced ß-catenin-mediated transcription in cells, while leaving Wnt1 responses unaffected. Structural analysis reveal that individual VHHs variably employ divergent antigen-binding regions to bind a similar surface in the third ß-propeller of LRP5/6, sterically interfering with Wnt3/3a binding. Importantly, anti-LRP5/6 VHHs block the growth of Wnt-hypersensitive Rnf43/Znrf3-mutant intestinal organoids through stem cell exhaustion and collective terminal differentiation. Thus, VHH-mediated targeting of LRP5/6 provides a promising differentiation-inducing strategy for treatment of Wnt-hypersensitive tumors.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-5/chemistry , Low Density Lipoprotein Receptor-Related Protein-6/chemistry , Organoids/drug effects , Single-Domain Antibodies/chemistry , Stem Cells/drug effects , Wnt3A Protein/genetics , Animals , Binding Sites , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Crystallography, X-Ray , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Intestine, Small/cytology , Intestine, Small/drug effects , Intestine, Small/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/antagonists & inhibitors , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/antagonists & inhibitors , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mice , Models, Molecular , Organoids/cytology , Organoids/metabolism , Protein Binding , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Transcription, Genetic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Wnt3A Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
11.
Sci Rep ; 8(1): 16292, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389954

ABSTRACT

Bacterial surfaces are decorated with carbohydrate structures that may serve as ligands for host receptors. Based on their ability to recognize specific sugar epitopes, plant lectins are extensively used for bacteria typing. We previously observed that the galactose-specific agglutinins from Ricinus communis (RCA) and Viscum album (VAA) exhibited differential binding to nontypeable Haemophilus influenzae (NTHi) clinical isolates, their binding being distinctly affected by truncation of the lipooligosaccharide (LOS). Here, we examined their binding to the structurally similar LOS molecules isolated from strains NTHi375 and RdKW20, using microarray binding assays, saturation transfer difference NMR, and molecular dynamics simulations. RCA bound the LOSRdKW20 glycoform displaying terminal Galß(1,4)Glcß, whereas VAA recognized the Galα(1,4)Galß(1,4)Glcß epitope in LOSNTHi375 but not in LOSRdKW20, unveiling a different presentation. Binding assays to whole bacterial cells were consistent with LOSNTHi375 serving as ligand for VAA, and also suggested recognition of the glycoprotein HMW1. Regarding RCA, comparable binding to NTHi375 and RdKW20 cells was observed. Interestingly, an increase in LOSNTHi375 abundance or expression of HMW1 in RdKW20 impaired RCA binding. Overall, the results revealed that, besides the LOS, other carbohydrate structures on the bacterial surface serve as lectin ligands, and highlighted the impact of the specific display of cell surface components on lectin binding.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Typing Techniques/methods , Haemophilus influenzae/immunology , Lipopolysaccharides/metabolism , Plant Lectins/metabolism , Antigens, Bacterial/immunology , Biological Assay/methods , Galactose/metabolism , Haemophilus influenzae/classification , Haemophilus influenzae/metabolism , Lipopolysaccharides/immunology , Microarray Analysis/methods , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular/methods , Plant Lectins/immunology
12.
Methods Mol Biol ; 1785: 53-63, 2018.
Article in English | MEDLINE | ID: mdl-29714011

ABSTRACT

We present a method to study the interaction between biomolecules and receptors present on the cell surface. This enables studies of molecular interactions in a natural biological context. As the analyte interacts with the receptors still intact on the cell surface, the experimental data provides complete dynamics and complexity of the interaction, thereby generating highly informative data. Attana's cell-based biosensor platform can be used to obtain this information from a diverse range of interactions as described in these protocols, which detail how to grow or capture cells on a surface, how to stabilize and visualize the cells on the surface, and how to set up assays to measure detailed interaction kinetics directly on the cell surface.


Subject(s)
Biosensing Techniques/methods , Cell Membrane/chemistry , Proteins/isolation & purification , Quartz Crystal Microbalance Techniques/methods , Cell Membrane/genetics , Humans , Kinetics , Protein Binding , Proteins/chemistry
13.
Anal Chem ; 90(8): 5366-5374, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29589451

ABSTRACT

When using biosensors, analyte biomolecules of several different concentrations are percolated over a chip with immobilized ligand molecules that form complexes with analytes. However, in many cases of biological interest, e.g., in antibody interactions, complex formation steady-state is not reached. The data measured are so-called sensorgram, one for each analyte concentration, with total complex concentration vs time. Here we present a new four-step strategy for more reliable processing of this complex kinetic binding data and compare it with the standard global fitting procedure. In our strategy, we first calculate a dissociation graph to reveal if there are any heterogeneous interactions. Thereafter, a new numerical algorithm, AIDA, is used to get the number of different complex formation reactions for each analyte concentration level. This information is then used to estimate the corresponding complex formation rate constants by fitting to the measured sensorgram one by one. Finally, all estimated rate constants are plotted and clustered, where each cluster represents a complex formation. Synthetic and experimental data obtained from three different QCM biosensor experimental systems having fast (close to steady-state), moderate, and slow kinetics (far from steady-state) were evaluated using the four-step strategy and standard global fitting. The new strategy allowed us to more reliably estimate the number of different complex formations, especially for cases of complex and slow dissociation kinetics. Moreover, the new strategy proved to be more robust as it enables one to handle system drift, i.e., data from biosensor chips that deteriorate over time.


Subject(s)
Algorithms , Biosensing Techniques , Quartz Crystal Microbalance Techniques , Kinetics
14.
Methods Enzymol ; 598: 37-70, 2018.
Article in English | MEDLINE | ID: mdl-29306443

ABSTRACT

Bacterial surfaces are decorated with a diversity of carbohydrate structures that play important roles in the bacteria-host relationships. They may offer protection against host defense mechanisms, elicit strong antigenic responses, or serve as ligands for host receptors, including lectins of the innate immune system. Binding by these lectins may trigger defense responses or, alternatively, promote attachment, thereby enhancing infection. The outcome will depend on the particular bacterial surface landscape, which may substantially differ among species and strains. In this chapter, we describe two novel methods for exploring interactions directly on the bacterial surface, based on the generation of bacterial microarrays and quartz crystal microbalance (QCM) sensor chips. Bacterial microarrays enable profiling of accessible carbohydrate structures and screening of their recognition by host receptors, also providing information on binding avidity, while the QCM approach allows determination of binding affinity and kinetics. In both cases, the chief element is the use of entire bacterial cells, so that recognition of the bacterial glycan epitopes is explored in their natural environment.


Subject(s)
Lectins/immunology , Microarray Analysis/methods , Polysaccharides, Bacterial/immunology , Quartz Crystal Microbalance Techniques/methods , Receptors, Immunologic/immunology , Host Microbial Interactions/immunology , Kinetics , Klebsiella pneumoniae/chemistry , Klebsiella pneumoniae/immunology , Lectins/chemistry , Ligands , Microarray Analysis/instrumentation , Polysaccharides, Bacterial/chemistry , Quartz Crystal Microbalance Techniques/instrumentation , Receptors, Immunologic/chemistry
15.
Polymers (Basel) ; 10(11)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30961200

ABSTRACT

A novel approach for preparing carbohydrate chips based on polydopamine (PDA) surface to study carbohydrate⁻lectin interactions by quartz crystal microbalance (QCM) biosensor instrument has been developed. The amino-carbohydrates were immobilized on PDA-coated quartz crystals via Schiff base reaction and/or Michael addition reaction. The resulting carbohydrate-chips were applied to QCM biosensor instrument with flow-through system for real-time detection of lectin⁻carbohydrate interactions. A series of plant lectins, including wheat germ agglutinin (WGA), concanavalin A (Con A), Ulex europaeus agglutinin I (UEA-I), soybean agglutinin (SBA), and peanut agglutinin (PNA), were evaluated for the binding to different kinds of carbohydrate chips. Clearly, the results show that the predicted lectin selectively binds to the carbohydrates, which demonstrates the applicability of the approach. Furthermore, the kinetics of the interactions between Con A and mannose, WGA and N-Acetylglucosamine were studied, respectively. This study provides an efficient approach to preparing carbohydrate chips based on PDA for the lectin⁻carbohydrate interactions study.

16.
Carbohydr Res ; 452: 35-42, 2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29054052

ABSTRACT

The role of sulfur in glycosidic bonds has been evaluated using quartz crystal microbalance methodology. Synthetic routes towards α1-2- and α1-6-linked dimannosides with S- or O-glycosidic bonds have been developed, and the recognition properties assessed in competition binding assays with the cognate lectin concanavalin A. Mannose-presenting QCM sensors were produced using photoinitiated, nitrene-mediated immobilization methods, and the subsequent binding study was performed in an automated flow-through instrumentation, and correlated with data from isothermal titration calorimetry. The recorded Kd-values corresponded well with reported binding affinities for the O-linked dimannosides with affinities for the α1-2-linked dimannosides in the lower micromolar range. The S-linked analogs showed slightly disparate effects, where the α1-6-linked analog showed weaker affinity than the O-linked dimannoside, as well as positive apparent cooperativity, whereas the α1-2-analog displayed very similar binding compared to the O-linked structure.


Subject(s)
Glycosides/chemistry , Phosphatidylinositols/chemistry , Quartz Crystal Microbalance Techniques/methods , Sulfur/chemistry , Biosensing Techniques , Lectins/chemistry , Molecular Structure , Photochemistry
17.
Polymers (Basel) ; 9(9)2017 Sep 01.
Article in English | MEDLINE | ID: mdl-30965713

ABSTRACT

Quartz crystal microbalance (QCM) has been extensively applied in real-time and label-free biomolecular interaction studies. However, the sensitive detection by QCM technology remains challenging, mainly due to the limited surface immobilization capacity. Here, a three-dimensional (3D) carboxymethyl dextran coated gold sensor chip surface was successfully fabricated with dextran of different molecular weight (100, 500 and 2000 kDa, respectively). To evaluate the 3D carboxymethyl dextran surface immobilization capacity, the 3D surface was used for studying antigen⁻antibody interactions on the QCM biosensor. The results showed that the protein immobilization capacity of the 3D carboxymethyl dextran (2000 kDa) surface exceeded more than 4 times the capacity of the 2D carboxyl surface, and 2 times the capacity of the traditional 3D carboxymethyl dextran (500 kDa) surface. Furthermore, the kinetic and affinity properties of antigen⁻antibody interactions were performed. Most notably, the optimized 3D carboxymethyl dextran (2000 kDa) surface could be used for small molecule detection, where the binding of biotinylated oligo (0.67 kDa) reached 8.1 Hz. The results confirmed that a 3D carboxymethyl dextran (2000 kDa) surface can be exploited for sensitive detection of low molecular weight analytes, which have great potential applications for characterizing the interactions between small molecule drugs and proteins.

18.
Anal Chem ; 88(11): 5950-7, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27176788

ABSTRACT

Recognition of bacterial surface epitopes by host receptors plays an important role in the infectious process and is intimately associated with bacterial virulence. Delineation of bacteria-host interactions commonly relies on the detection of binding events between purified bacteria- and host-target molecules. In this work, we describe a combined microarray and quartz crystal microbalance (QCM) approach for the analysis of carbohydrate-mediated interactions directly on the bacterial surface, thus preserving the native environment of the bacterial targets. Nontypeable Haemophilus influenzae (NTHi) was selected as a model pathogenic species not displaying a polysaccharide capsule or O-antigen-containing lipopolysaccharide, a trait commonly found in several important respiratory pathogens. Here, we demonstrate the usefulness of NTHi microarrays for exploring the presence of carbohydrate structures on the bacterial surface. Furthermore, the microarray approach is shown to be efficient for detecting strain-selective binding of three innate immune lectins, namely, surfactant protein D, human galectin-8, and Siglec-14, to different NTHi clinical isolates. In parallel, QCM bacteria-chips were developed for the analysis of lectin-binding kinetics and affinity. This novel QCM approach involves capture of NTHi on lectin-derivatized chips followed by formaldehyde fixation, rendering the bacteria an integrated part of the sensor chip, and subsequent binding assays with label-free lectins. The binding parameters obtained for selected NTHi-lectin pairs provide further insights into the interactions occurring at the bacterial surface.


Subject(s)
Haemophilus influenzae/chemistry , Lectins/analysis , Microarray Analysis , Polysaccharides/chemistry , Quartz Crystal Microbalance Techniques
19.
Analyst ; 141(13): 3993-6, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27196531

ABSTRACT

The signal enhancement properties of QCM sensors based on dynamic, biotinylated poly(acrylic acid) brushes has been studied in interaction studies with an anti-biotin Fab fragment. The poly(acrylic acid) sensors showed a dramatic increase in signal response with more than ten times higher signal than the carboxyl-terminated self-assembled monolayer surface.


Subject(s)
Biosensing Techniques , Immunoglobulin Fab Fragments/chemistry , Polymers , Quartz Crystal Microbalance Techniques , Biotin , Ligands
20.
Sci Rep ; 5: 14066, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26369583

ABSTRACT

A novel approach to the study of binding thermodynamics and kinetics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a quartz crystal microbalance (QCM) biosensor was developed, in which binding events take place at the cell surface, more closely mimicking a biologically relevant environment. In this study, colon adenocarcinoma cells (KM-12) and ovary adenocarcinoma cells (SKOV-3) grew on the optimized polystyrene-coated biosensor chip without fixation. The association and dissociation between the cell surface carbohydrates and a range of lectins, including WGA, Con A, UEA-I, GS-II, PNA and SBA, were monitored in real time and without label for evaluation of cell surface glycosylation. Furthermore, the thermodynamic and kinetic parameters of the interaction between lectins and cell surface glycan were studied, providing detailed information about the interactions, such as the association rate constant, dissociation rate constant, affinity constant, as well as the changes of entropy, enthalpy and Gibbs free energy. This application provides an insight into the cell surface glycosylation and the complex molecular recognition on the intact cell surface, which may have impacts on disease diagnosis and drug discovery.


Subject(s)
Biosensing Techniques , Carbohydrates , Cell Membrane/metabolism , Neoplasms/metabolism , Proteins/metabolism , Quartz Crystal Microbalance Techniques , Thermodynamics , Carbohydrates/chemistry , Cell Line, Tumor , Cell Membrane/chemistry , Humans , Lectins/metabolism , Protein Binding , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...