Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 274(Pt 2): 133185, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880462

ABSTRACT

The present research was conducted to explore the potential of mango kernel starch from the Chaunsa variety to develop starch and starch nanoparticles (SNPs) based films. The investigation included starch isolation from mango kernel followed by the preparation of SNPs by acid hydrolysis and a thorough examination of various physicochemical properties for film formation. The properties of SNPs were found to be distinctly different from those of native starch. SNPs exhibited an aggregated form with an irregular surface, whereas native starch had an oval and elongated shape with a smooth surface. X-ray diffraction (XRD) analysis confirmed that the starch type in SNPs was of the A-type. Additionally, the pasting properties of SNPs were minimal due to the acid hydrolysis process. SNP-based composite film was developed with (5 %) SNP concentration added. This successful incorporation of SNPs enhanced biodegradability, with complete degradation occurring within three weeks. Moreover, the composite films displayed increased burst strength, measuring 1303.51 ± 73.7 g, and lower water vapor transmission rates (WVTR) at (7.40 ± 0.50) × 10-3 g per square meter per second and reduced water solubility at 35.32 ± 3.0 %. This development represents a significant advancement in the field of eco-friendly packaging materials.

2.
Int J Biol Macromol ; 270(Pt 2): 132220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754654

ABSTRACT

Developing an edible and active coating, incorporating environmentally-friendly antimicrobial agents into edible polymers, provides an eco-friendly alternative to conventional packaging and exhibits significant potential in preserving the quality of postharvest food. Herein, we aim to develop a novel edible and active coating based on xanthan gum (XG) nanoemulsion (NE) incorporating betel leaf extract (BLE) for the preservation of fresh produce. The total phenolic content, total flavonoid content, and antioxidant capacity of the methanol extract of BLE at various concentrations were characterized. Further development of the active coating at different formulations of Tween 80 (1 % and 3 % w/v), XG (0.1 % to 0.5 % w/v), and BLE (1 % to 5 % w/v) was characterized by physical stability, viscosity, and antimicrobial properties. Results showed that the active coating at 1 % BLE showed significant antimicrobial properties against diverse bacterial and fungal foodborne pathogens (e.g., B. cereus, S. aureus) and fungal cultures (e.g., C. albicans). The study also examined the shelf-life of tomatoes coated with the BLE-XG NE solution, stored at 4 °C for 27 days. Analyses of weight retention, soluble solids, pH, texture, sensory attributes, and microbial populations showed that the coating effectively preserved tomato quality, highlighting its potential to preserve fresh produce and enhance food security.


Subject(s)
Emulsions , Food Preservation , Plant Extracts , Plant Leaves , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Food Preservation/methods , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Viscosity , Solanum lycopersicum/chemistry , Microbial Sensitivity Tests
3.
Food Chem ; 418: 135916, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37001356

ABSTRACT

In recent years, there has been considerable growth in the creation of edible films and coatings, which is predicted to have a major impact on fruit quality in the coming years. Consumers want fresh fruits that are pesticide-free, good quality, high nutritional value, and a long shelf life. The use of edible coatings and films on fruits is an environmentally dependable approach to a creative solution to this problem. The application, recent trends, and views of coatings and edible films, as well as their impact on fruit quality, are presented in this article, along with a knowledge of their key roles and benefits. According to numerous studies, natural polymers are highly suited for use as packaging material for fresh fruits and can often be a viable alternative to synthetic chemicals. Plasticisers, surfactants, cross-linkers, antimicrobial agents, functional additives, nanoparticles, and fruit and vegetable residues can be used to alter the properties of edible coatings.


Subject(s)
Edible Films , Food Preservation , Food Packaging , Fruit , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...