Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 252, 2023 May 13.
Article in English | MEDLINE | ID: mdl-37173650

ABSTRACT

BACKGROUND: Heavy metals (HMs) phytoremediation is a well-recognized protocol to remove toxic elements from the soil. As known, arbuscular mycorrhizal fungi (AMF) enhance the plants' growth responses. The idea of the present study was to assay the response of lavender plants to HMs stress under AMF inoculation. We hypothesized that mycorrhiza will enhance the phytoremediation and simultaneously reduce the harmful effects of heavy HMs. So, lavender (Lavandula angustifolia L.) plants were inoculated with AMF (0 and 5 g Kg-1 soil) under Pb [150 and 225 mg kg-1 soil from Pb (NO3)2] and Ni [220 and 330 mg kg-1 soil from Ni (NO3)2] pollution, in the greenhouse conditions. The control treatment was plants not treated with AMF and HMs. Doing this, the root colonization, HMs uptake, enzymatic and non-enzymatic antioxidants pool, MDA, proline, total phenolics (TPC), flavonoids (TFC), anthocyanins, and essential oil (EO) components were evaluated. RESULTS: According to the findings, the AMF inoculation enhanced shoot and root Pb and Ni content, antioxidant enzymes activity, the total antioxidant activity by DPPH and FRAP methods, TPC, TFC, anthocyanins, and H2O2 content in the lavender plants subjected to Pb and Ni stress. Moreover, the highest (28.91%) and the least (15.81%) percentages of borneol were identified in the lavender plants subjected to AMF under 150 mg kg-1 of Pb and the control plants without AMF application, respectively. Furthermore, the top 1,8-cineole (12.75%) content was recorded in AMF-inoculated plants. CONCLUSIONS: The overall results verify that AMF inoculation can be a reliable methodology to enhance the phytoremediation of Pb and Ni by lavender plants while maintaining reliable growth potential. The treatments improved the main EO constituents content, especially under moderate HMs stress conditions. With more detailed studies, the results will be advisable for the extension section for the phytoremediation of polluted soils.


Subject(s)
Lavandula , Metals, Heavy , Mycorrhizae , Soil Pollutants , Biodegradation, Environmental , Anthocyanins , Lead , Hydrogen Peroxide , Mycorrhizae/physiology , Antioxidants , Soil/chemistry , Plant Roots
2.
BMC Plant Biol ; 23(1): 135, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899321

ABSTRACT

BACKGROUND: Cold stress is an effective factor in reducing production and injuring fruit trees. Various materials, such as salicylic acid, ascorbic acid, and putrescine, are used to alleviate the damage of abiotic stress. RESULTS: The effect of different treatments of putrescine, salicylic acid, and ascorbic acid on alleviating the damage of frost stress (- 3 °C) to grapes 'Giziluzum' was investigated. Frost stress increased the amount of H2O2, MDA, proline, and MSI. On the other hand, it decreased the concentration of chlorophyll and carotenoids in the leaves. Putrescine, salicylic acid and ascorbic acid significantly increased the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, and superoxide dismutase under frost stress. Following frost stress, the grapes treated with putrescine, salicylic acid, and ascorbic acid showed higher levels of DHA, AsA, and AsA/DHA than the untreated grapes. Our results showed that the treatment with ascorbic acid outperformed the other treatments in adjusting frost stress damages. CONCLUSION: The use of compounds, such as ascorbic ac id, salicylic acid, and putrescine, modulates the effects of frost stress, thereby increasing the antioxidant defense system of cells, reducing its damage, and stabilizing stable cell conditions, so it can be used to reduce frost damage to different grape cultivars.


Subject(s)
Ascorbic Acid , Vitis , Salicylic Acid/pharmacology , Putrescine/pharmacology , Hydrogen Peroxide/pharmacology , Antioxidants/pharmacology
3.
Plants (Basel) ; 12(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36840218

ABSTRACT

An efficient method to instantly assess drought-tolerant plants after germination is using osmoregulation in tissue culture media. In this study, the responses of three Iranian melon genotypes to sorbitol (0.1, 0.2, and 0.4 M) or polyethylene glycol (PEG) (0.009, 0.012, and 0.015 M) were evaluated as drought stress simulators in MS medium. 'Girke' (GIR), 'Ghobadloo' (GHO), and 'Toghermezi' (TOG) were the genotypes. GIR is reputed as a drought-tolerant genotype in Iran. The PEG or sorbitol decreased the coleoptile length, fresh weight, and photosynthetic pigments content while enhancing proline and malondialdehyde (MDA) contents. Protein content and antioxidant enzyme activity were utterly dependent on genotype, osmotic regulators, and their concentration. Coleoptile length, root and shoot fresh weight, root dry weight, proline and MDA content, and guaiacol peroxidase (GPX) activity can be used as indicators for in vitro screening of Cucumis melo L. genotypes. The results showed that sorbitol mimics drought stress better than PEG. Overall, our findings suggest that in vitro screening could be an accurate, rapid, and reliable methodology for evaluating and identifying drought-tolerant genotypes.

4.
Sci Rep ; 13(1): 883, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650251

ABSTRACT

Salinity is one of the most important abiotic stresses that reduce plant growth and performance by changing physiological and biochemical processes. In addition to improving the crop, using nanomaterials in agriculture can reduce the harmful effects of environmental stresses, particularly salinity. A factorial experiment was conducted in the form of a completely randomized design with two factors including salt stress at three levels (0, 50, and 100 mM NaCl) and chitosan-salicylic acid nanocomposite at three levels (0, 0.1, and 0.5 mM). The results showed reductions in chlorophylls (a, b, and total), carotenoids, and nutrient elements (excluding sodium) while proline, hydrogen peroxide, malondialdehyde, total soluble protein, soluble carbohydrate, total antioxidant, and antioxidant enzymes activity increased with treatment chitosan-salicylic acid nanocomposite (CS-SA NCs) under different level NaCl. Salinity stress reduced Fm', Fm, and Fv/Fm by damage to photosynthetic systems, but treatment with CS-SA NCs improved these indices during salinity stress. In stress-free conditions, applying the CS-SA NCs improved the grapes' physiological, biochemical, and nutrient elemental balance traits. CS-SA NCs at 0.5 mM had a better effect on the studied traits of grapes under salinity stress. The CS-SA nanoparticle is a biostimulant that can be effectively used to improve the grape plant yield under salinity stress.


Subject(s)
Chitosan , Nanocomposites , Salt Stress , Vitis , Antioxidants/pharmacology , Antioxidants/metabolism , Chitosan/pharmacology , Salicylic Acid/pharmacology , Salinity , Sodium Chloride/pharmacology , Vitis/metabolism
5.
Int J Mol Sci ; 23(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35563484

ABSTRACT

In the present study, the effects of foliar application of salicylic acid (100 µM), cerium oxide (50 mg L-1), and cerium oxide:salicylic acid nanoparticles (CeO2: SA-nanoparticles, 50 mg L-1 + 100 µM) on the growth and physiological responses of purslane (Portulaca oleracea L.) were examined in non-saline and saline conditions (50 and 100 mM NaCl salinity). Foliar applications mitigated salinity-induced adverse effects, and the highest plant height and N, P, Mg, and Mn content were recorded in the variant with non-saline × foliar use of CeO2: SA-nanoparticles. The highest values of fresh and dry weight were noted in the treatment with no-salinity × foliar use of CeO2:SA-nanoparticles. The highest number of sub-branches was observed in the foliar treatments with CeO2-nanoparticles and CeO2:SA-nanoparticles without salinity stress, while the lowest number was noted in the 100 mM NaCl treatment. Moreover, the foliar application of CeO2:SA-nanoparticles and cerium-oxide nanoparticles improved the total soluble solid content, K, Fe, Zn, Ca, chlorophyll a, and oil yield in the plants. The salinity of 0 and 50 mM increased the K content, 1000-seed weight, total soluble solid content, and chlorophyll b content. The use of 100 mM NaCl with no-foliar spray increased the malondialdehyde, Na, and H2O2 content and the Na+/K+ ratio. No-salinity and 50 mM NaCl × CeO2: SA-nanoparticle interactions improved the anthocyanin content in plants. The phenolic content was influenced by NaCl100 and the foliar use of CeO2:SA-nanoparticles. The study revealed that the foliar treatment with CeO2:SA-nanoparticles alleviated the side effects of salinity by improving the physiological responses and growth-related traits of purslane plants.


Subject(s)
Cerium , Nanoparticles , Portulaca , Cerium/pharmacology , Chlorophyll A , Hydrogen Peroxide , Salicylic Acid/pharmacology , Salinity , Sodium Chloride/pharmacology
6.
Sci Rep ; 12(1): 4234, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273327

ABSTRACT

Salinity is a worldwide stressor that influences the growth and productivity of plants. Some novel compounds like; graphene oxide and nutrients such as Se and Fe especially as nano form may improve plant responses to the environmental stress factors. The soil-based graphene oxide (0, 50, and 100 g kg-1) and the foliar applications of Se and nano-Fe (control and 3 mg L-1) were assayed on grapevine cv. Sultana under salinity (0, 50, and 100 mM NaCl). The top flavonoids, chlorophyll b, and plant dry weight belonged to graphene oxide and nano-Fe applications. CAT activity was improved in response to Se, nano-Fe, and graphene oxide (50 g kg-1). The least Fe, K, Se, N, Mg, Mn, and Zn content was recorded for 100 mM NaCl. In contrast, the higher data for K, Se, Ca, Mg, Zn and Mn were acquired with graphene oxide × foliar treatments. In general, graphene oxide treatment (50 g kg-1) × nano-Fe and Se foliar use ameliorated the adverse salinity effects with the improved biochemical and physiological responses of Sultana grape.


Subject(s)
Selenium , Vitis , Antioxidants/pharmacology , Graphite , Oxides/pharmacology , Salinity , Selenium/pharmacology , Sodium Chloride/pharmacology , Soil/chemistry
7.
BMC Plant Biol ; 21(1): 597, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34915853

ABSTRACT

BACKGROUND: Salinity is one of the most challenging abiotic stresses restricting the growth of plants. In vitro screening will increase the efficiency and speed of salinity tolerant genotypes identifications. The response of four tomato cultivars under salinity was analyzed in vitro to evaluate the seedlings growth, biochemical, and gene expression responses as well as the effect of nano zinc and iron on callus induction and plant regeneration. RESULTS: The results showed that an increase in salinity stress in the medium decreased the germination percentage, fresh and dry weight of shoot, root length, chlorophyll a, b and carotenoids content, K and Ca content, and on the other hand, Na content was increased. MDA content ('Nora', 'PS-10', 'Peto' and 'Roma': 1.71, 1.78, 1.66 and 2.16 folds, respectively), electrolyte leakage ('PS-10': 33.33%; 'Roma': 56.33%), were increased with salinity of 100 mM compared to control. Proline content was increased in 50 mM NaCl (10.8 fold). The most activity of antioxidant enzymes including CAT, SOD, APX, GPX, and GR was observed in the 'PS-10' cultivar, and the lowest activity of these enzymes was observed in 'Roma' under salinity stress. The AsA and GSH were decreased and DHA and GSSG were increased with the increased intensity of salinity. The relative expression of SOD, APX, and GR genes varied in different cultivars at different salinity concentrations. The most percentage of callus induction was observed with applying iron oxide nanoparticles, and the most regeneration rate was recorded using zinc oxide nanoparticles. CONCLUSION: The results showed that salt-tolerant cultivars such as 'PS-10' with better osmotic adjustment, are suitable candidates for the future production and breeding programs. The use of nutrient nanoparticles under salinity stress for different tomato cultivars increased their performance.


Subject(s)
Antioxidants/metabolism , Gene Expression Regulation, Plant , Iron/pharmacology , Nanoparticles , Solanum lycopersicum/physiology , Zinc Oxide/pharmacology , Cambium/cytology , Carotenoids/metabolism , Chlorophyll/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Oxidative Stress , Plant Cells/metabolism , Regeneration , Salt Stress , Seedlings/growth & development
8.
J Genet Eng Biotechnol ; 15(1): 257-261, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30647662

ABSTRACT

The present study investigates the effects of exogenous salicylic acid (SA) on the expression of Vitis vinifera C-repeat binding factor 4 (VvCBF4) gene under low-temperature conditions in an Iranian Vitis viniferea L. 'Sultanina'. The experiment was conducted as a factorial experiment based on a completely randomized design with four replications. 100 µmol/L SA (0, 1, 6 and 12 h before applying cold stress) in temperatures of 1 ± 0.5 °C (for 1, 3, 6 and 12 h) and 22 °C (as control) were applied. The highest expression was observed in plants treated 6 h before sampling. By increasing the duration of low temperature, the expression of VvCBF4 increased. Increasing the duration of cold stress to 6 h in 1 °C increased the expression of VvCBF4 to 24.3 fold. Exogenous application of SA and cold stress treatments increased the expression of VvCBF4. In conclusion, exogenous application of SA in cold stress, increased the expression of VvCBF4 depending on treating time before cold stress. The highest VvCBF4 expression was observed in plants treated 6 h before sampling and increasing the time decreased the expression. By increasing the expression of VvCBF4 the tolerance of plant to cold stress increased.

SELECTION OF CITATIONS
SEARCH DETAIL
...