Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biofabrication ; 16(4)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38964314

ABSTRACT

Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.


Subject(s)
Lab-On-A-Chip Devices , Skin , Humans , Animals , Translational Research, Biomedical
2.
Biofabrication ; 16(4)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38941996

ABSTRACT

Human skin vasculature features a unique anatomy in close proximity to the skin appendages and acts as a gatekeeper for constitutive lymphocyte trafficking to the skin. Approximating such structural complexity and functionality in 3D skin models is an outstanding tissue engineering challenge. In this study, we leverage the capabilities of the digital-light-processing bioprinting to generate an anatomically-relevant and miniaturized 3D skin-on-a-chip (3D-SoC) model in the size of a 6 mm punch biopsy. The 3D-SoC contains a perfusable vascular network resembling the superficial vascular plexus of the skin and closely surrounding bioengineered hair follicles. The perfusion capabilities of the 3D-SoC enables the circulation of immune cells, and high-resolution imaging of the immune cell-endothelial cell interactions, namely tethering, rolling, and extravasation in real-time. Moreover, the vascular pattern in 3D-SoC captures the physiological range of shear rates found in cutaneous blood vessels and allows for studying the effect of shear rate on T cell trafficking. In 3D-SoC, as expected,in vitro-polarized T helper 1 (Th1) cells show a stronger attachment on the vasculature compared to naïve T cells. Both naïve and T cells exhibit higher retention in the low-shear zones in the early stages (<5 min) of T cell attachment. Interestingly, at later stages T cell retention rate becomes independent of the shear rate. The attached Th1 cells further transmigrate from the vessel walls to the extracellular space and migrate toward the bioengineered hair follicles and interfollicular epidermis. When the epidermis is not present, Th1 cell migration toward the epidermis is significantly hindered, underscoring the role of epidermal signals on T cell infiltration. Our data validates the capabilities of 3D-SoC model to study the interactions between immune cells and skin vasculature in the context of epidermal signals. The biopsy-sized 3D-SoC model in this study represents a new level of anatomical and cellular complexity, and brings us a step closer to generating a truly functional human skin with its tissue-specific vasculature and appendages in the presence of circulating immune cells.


Subject(s)
Hair Follicle , Skin , Humans , Skin/blood supply , Skin/cytology , Hair Follicle/cytology , Hair Follicle/blood supply , Cell Movement , Biopsy , Tissue Engineering , Bioprinting
3.
Biomicrofluidics ; 18(3): 030401, 2024 May.
Article in English | MEDLINE | ID: mdl-38716141
4.
Article in English | MEDLINE | ID: mdl-37464464

ABSTRACT

Fluidic microphysiological systems (MPS) are microfluidic cell culture devices that are designed to mimic the biochemical and biophysical in vivo microenvironments of human tissues better than conventional petri dishes or well-plates. MPS-grown tissue cultures can be used for probing new drugs for their potential primary and secondary toxicities as well as their efficacy. The systems can also be used for assessing the effects of environmental nanoparticles and nanotheranostics, including their rate of uptake, biodistribution, elimination, and toxicity. Pumpless MPS are a group of MPS that often utilize gravity to recirculate cell culture medium through their microfluidic networks, providing some advantages, but also presenting some challenges. They can be operated with near-physiological amounts of blood surrogate (i.e., cell culture medium) that can recirculate in bidirectional or unidirectional flow patterns depending on the device configuration. Here we discuss recent advances in the design and use of both pumped and pumpless MPS with a focus on where pumpless devices can contribute to realizing the potential future role of MPS in evaluating nanomaterials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.


Subject(s)
Lab-On-A-Chip Devices , Microphysiological Systems , Humans , Tissue Distribution , Microfluidics , Drug Discovery
5.
Sci Adv ; 9(4): eade2514, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36706190

ABSTRACT

Despite the advancements in skin bioengineering, 3D skin constructs are still produced as flat tissues with open edges, disregarding the fully enclosed geometry of human skin. Therefore, they do not effectively cover anatomically complex body sites, e.g., hands. Here, we challenge the prevailing paradigm by engineering the skin as a fully enclosed 3D tissue that can be shaped after a body part and seamlessly transplanted as a biological clothing. Our wearable edgeless skin constructs (WESCs) show enhanced dermal extracellular matrix (ECM) deposition and mechanical properties compared to conventional constructs. WESCs display region-specific cell/ECM alignment, as well as physiologic anisotropic mechanical properties. WESCs replace the skin in full-thickness wounds of challenging body sites (e.g., mouse hindlimbs) with minimal suturing and shorter surgery time. This study provides a compelling technology that may substantially improve wound care and suggests that the recapitulation of the tissue macroanatomy can lead to enhanced biological function.


Subject(s)
Bioengineering , Extracellular Matrix , Humans , Engineering , Tissue Engineering
6.
Front Bioeng Biotechnol ; 10: 1038277, 2022.
Article in English | MEDLINE | ID: mdl-36466337

ABSTRACT

Organoids are self-organized and miniatured in vitro models of organs and recapitulate key aspects of organ architecture and function, leading to rapid progress in understanding tissue development and disease. However, current organoid culture systems lack accurate spatiotemporal control over biochemical and physical cues that occur during in vivo organogenesis and fail to recapitulate the complexity of organ development, causing the generation of immature organoids partially resembling tissues in vivo. Recent advances in biomaterials and microengineering technologies paved the way for better recapitulation of organ morphogenesis and the generation of anatomically-relevant organoids. For this, understanding the native ECM components and organization of a target organ is essential in providing rational design of extracellular scaffolds that support organoid growth and maturation similarly to the in vivo microenvironment. In this review, we focus on epithelial organoids that resemble the spatial distinct structure and function of organs lined with epithelial cells including intestine, skin, lung, liver, and kidney. We first discuss the ECM diversity and organization found in epithelial organs and provide an overview of developing hydrogel systems for epithelial organoid culture emphasizing their key parameters to determine cell fates. Finally, we review the recent advances in tissue engineering and microfabrication technologies including bioprinting and microfluidics to overcome the limitations of traditional organoid cultures. The integration of engineering methodologies with the organoid systems provides a novel approach for instructing organoid morphogenesis via precise spatiotemporal modulation of bioactive cues and the establishment of high-throughput screening platforms.

7.
Front Pain Res (Lausanne) ; 3: 912977, 2022.
Article in English | MEDLINE | ID: mdl-35875478

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a highly prevalent and complex condition arising from chemotherapy cancer treatments. Currently, there are no treatment or prevention options in the clinic. CIPN accompanies pain-related sensory functions starting from the hands and feet. Studies focusing on neurons in vitro and in vivo models significantly advanced our understanding of CIPN pathological mechanisms. However, given the direct toxicity shown in both neurons and non-neuronal cells, effective in vivo or in vitro models that allow the investigation of neurons in their local environment are required. No single model can provide a complete solution for the required investigation, therefore, utilizing a multi-model approach would allow complementary advantages of different models and robustly validate findings before further translation. This review aims first to summarize approaches and insights from CIPN in vivo models utilizing small model organisms. We will focus on Drosophila melanogaster CIPN models that are genetically amenable and accessible to study neuronal interactions with the local environment in vivo. Second, we will discuss how these findings could be tested in physiologically relevant vertebrate models. We will focus on in vitro approaches using human cells and summarize the current understanding of engineering approaches that may allow the investigation of pathological changes in neurons and the skin environment.

8.
Adv Wound Care (New Rochelle) ; 10(9): 490-502, 2021 09.
Article in English | MEDLINE | ID: mdl-32870778

ABSTRACT

Objective: We compared the capability of human umbilical vein endothelial cells (HUVECs), induced pluripotent stem cell (iPSC)-derived endothelial cells (iECs), and human dermal blood endothelial cells (HDBECs) to effectively vascularize engineered human skin constructs (HSCs) in vitro and on immunodeficient mice. Approach: We quantified the angiogenesis within HSCs both in vitro and in vivo through computational analyses of immunofluorescent (IF) staining. We assayed with real-time quantitative PCR (RT-qPCR) the expression of key endothelial, dermal, and epidermal genes in 2D culture and HSCs. Epidermal integrity and proliferation were also evaluated through haematoxylin and eosin staining, and IF staining. Results: IF confirmed iEC commitment to endothelial phenotype. RT-qPCR showed HUVECs and iECs immaturity compared with HDBECs. In vitro, the vascular network extension was comparable for HDBECs and HUVECs despite differences in vascular diameter, whereas iECs formed unorganized rudimentary tubular structures. In vivo, all ECs produced discrete vascular networks of varying dimensions. HUVECs and HDBECs maintained a higher proliferation of basal keratinocytes. HDBECs had the best impact on extracellular matrix expression, and epidermal proliferation and differentiation. Innovation: To our knowledge, this study represents the first direct and quantitative comparison of HDBECs, HUVECs, and iECs angiogenic performance in HSCs. Conclusions: Our data indicate that HUVECs and iECs can be an alternative cell source to HDBEC to promote the short-term viability of prevascularized engineered grafts. Nevertheless, HDBECs maintain their capillary identity and outperform other EC types in promoting the maturation of the dermis and epidermis. These intrinsic characteristics of HDBECs may influence the long-term function of skin grafts.


Subject(s)
Induced Pluripotent Stem Cells , Skin Transplantation , Tissue Engineering , Umbilical Veins , Animals , Endothelial Cells , Humans , Mice , Real-Time Polymerase Chain Reaction
9.
Nat Commun ; 9(1): 5301, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30546011

ABSTRACT

Human skin constructs (HSCs) have the potential to provide an effective therapy for patients with significant skin injuries and to enable human-relevant drug screening for skin diseases; however, the incorporation of engineered skin appendages, such as hair follicles (HFs), into HSCs remains a major challenge. Here, we demonstrate a biomimetic approach for generation of human HFs within HSCs by recapitulating the physiological 3D organization of cells in the HF microenvironment using 3D-printed molds. Overexpression of Lef-1 in dermal papilla cells (DPC) restores the intact DPC transcriptional signature and significantly enhances the efficiency of HF differentiation in HSCs. Furthermore, vascularization of hair-bearing HSCs prior to engraftment allows for efficient human hair growth in immunodeficient mice. The ability to regenerate an entire HF from cultured human cells will have a transformative impact on the medical management of different types of alopecia, as well as chronic wounds, which represent major unmet medical needs.


Subject(s)
Alopecia/therapy , Dermis/cytology , Hair Follicle/growth & development , Hair Follicle/transplantation , Tissue Engineering/methods , Alopecia/pathology , Animals , Biomimetics , Cell Differentiation , Cells, Cultured , Hair Follicle/cytology , Human Umbilical Vein Endothelial Cells , Humans , Lymphoid Enhancer-Binding Factor 1/biosynthesis , Male , Mice , Mice, Nude , Transplantation, Heterologous
10.
Biotechnol Bioeng ; 114(1): 184-194, 2017 01.
Article in English | MEDLINE | ID: mdl-27399645

ABSTRACT

Efficient delivery of therapeutics across the neuroprotective blood-brain barrier (BBB) remains a formidable challenge for central nervous system drug development. High-fidelity in vitro models of the BBB could facilitate effective early screening of drug candidates targeting the brain. In this study, we developed a microfluidic BBB model that is capable of mimicking in vivo BBB characteristics for a prolonged period and allows for reliable in vitro drug permeability studies under recirculating perfusion. We derived brain microvascular endothelial cells (BMECs) from human induced pluripotent stem cells (hiPSCs) and cocultured them with rat primary astrocytes on the two sides of a porous membrane on a pumpless microfluidic platform for up to 10 days. The microfluidic system was designed based on the blood residence time in human brain tissues, allowing for medium recirculation at physiologically relevant perfusion rates with no pumps or external tubing, meanwhile minimizing wall shear stress to test whether shear stress is required for in vivo-like barrier properties in a microfluidic BBB model. This BBB-on-a-chip model achieved significant barrier integrity as evident by continuous tight junction formation and in vivo-like values of trans-endothelial electrical resistance (TEER). The TEER levels peaked above 4000 Ω · cm2 on day 3 on chip and were sustained above 2000 Ω · cm2 up to 10 days, which are the highest sustained TEER values reported in a microfluidic model. We evaluated the capacity of our microfluidic BBB model to be used for drug permeability studies using large molecules (FITC-dextrans) and model drugs (caffeine, cimetidine, and doxorubicin). Our analyses demonstrated that the permeability coefficients measured using our model were comparable to in vivo values. Our BBB-on-a-chip model closely mimics physiological BBB barrier functions and will be a valuable tool for screening of drug candidates. The residence time-based design of a microfluidic platform will enable integration with other organ modules to simulate multi-organ interactions on drug response. Biotechnol. Bioeng. 2017;114: 184-194. © 2016 Wiley Periodicals, Inc.


Subject(s)
Blood-Brain Barrier/metabolism , Drug Evaluation, Preclinical/methods , Microfluidic Analytical Techniques/methods , Models, Biological , Tissue Array Analysis/methods , Cell Line , Electric Impedance , Equipment Design , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Microfluidic Analytical Techniques/instrumentation , Permeability
11.
Integr Biol (Camb) ; 7(4): 383-91, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25739725

ABSTRACT

Advances in maintaining multiple human tissues on microfluidic platforms has led to a growing interest in the development of microphysiological systems for drug development studies. Determination of the proper design principles and scaling rules for body-on-a-chip systems is critical for their strategic incorporation into physiologically based pharmacokinetic (PBPK)/pharmacodynamic (PD) model-aided drug development. While the need for a functional design considering organ-organ interactions has been considered, robust design criteria and steps to build such systems have not yet been defined mathematically. In this paper, we first discuss strategies for incorporating body-on-a-chip technology into the current PBPK modeling-based drug discovery to provide a conceptual model. We propose two types of platforms that can be involved in the different stages of PBPK modeling and drug development; these are µOrgans-on-a-chip and µHuman-on-a-chip. Then we establish the design principles for both types of systems and develop parametric design equations that can be used to determine dimensions and operating conditions. In addition, we discuss the availability of the critical parameters required to satisfy the design criteria, consider possible limitations for estimating such parameter values and propose strategies to address such limitations. This paper is intended to be a useful guide to the researchers focused on the design of microphysiological platforms for PBPK/PD based drug discovery.


Subject(s)
Biological Assay/instrumentation , Drug Design , Lab-On-A-Chip Devices , Organ Culture Techniques/instrumentation , Pharmacokinetics , Pharmacology/instrumentation , Equipment Design , Equipment Failure Analysis , Flow Injection Analysis/instrumentation , Humans , Models, Biological
12.
J Lab Autom ; 20(2): 107-26, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25586998

ABSTRACT

Transepithelial/transendothelial electrical resistance (TEER) is a widely accepted quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial and epithelial monolayers. TEER values are strong indicators of the integrity of the cellular barriers before they are evaluated for transport of drugs or chemicals. TEER measurements can be performed in real time without cell damage and generally are based on measuring ohmic resistance or measuring impedance across a wide spectrum of frequencies. The measurements for various cell types have been reported with commercially available measurement systems and also with custom-built microfluidic implementations. Some of the barrier models that have been widely characterized using TEER include the blood-brain barrier (BBB), gastrointestinal (GI) tract, and pulmonary models. Variations in these values can arise due to factors such as temperature, medium formulation, and passage number of cells. The aim of this article is to review the different TEER measurement techniques and analyze their strengths and weaknesses, determine the significance of TEER in drug toxicity studies, examine the various in vitro models and microfluidic organs-on-chips implementations using TEER measurements in some widely studied barrier models (BBB, GI tract, and pulmonary), and discuss the various factors that can affect TEER measurements.


Subject(s)
Cytological Techniques/instrumentation , Cytological Techniques/methods , Electric Impedance , Electrophysiological Phenomena , Endothelial Cells/physiology , Epithelial Cells/physiology , Animals , Humans
13.
Lab Chip ; 15(3): 882-8, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25490891

ABSTRACT

Advances in bio-mimetic in vitro human skin models increase the efficiency of drug screening studies. In this study, we designed and developed a microfluidic platform that allows for long-term maintenance of full thickness human skin equivalents (HSE) which are comprised of both the epidermal and dermal compartments. The design is based on the physiologically relevant blood residence times in human skin tissue and allows for the establishment of an air-epidermal interface which is crucial for maturation and terminal differentiation of HSEs. The small scale of the design reduces the amount of culture medium and the number of cells required by 36 fold compared to conventional transwell cultures. Our HSE-on-a-chip platform has the capability to recirculate the medium at desired flow rates without the need for pump or external tube connections. We demonstrate that the platform can be used to maintain HSEs for three weeks with proliferating keratinocytes similar to conventional HSE cultures. Immunohistochemistry analyses show that the differentiation and localization of keratinocytes was successfully achieved, establishing all sub-layers of the epidermis after one week. Basal keratinocytes located at the epidermal-dermal interface remain in a proliferative state for three weeks. We use a transdermal transport model to show that the skin barrier function is maintained for three weeks. We also validate the capability of the HSE-on-a-chip platform to be used for drug testing purposes by examining the toxic effects of doxorubucin on skin cells and structure. Overall, the HSE-on-a-chip is a user-friendly and cost-effective in vitro platform for drug testing of candidate molecules for skin disorders.


Subject(s)
Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Drug Evaluation, Preclinical/instrumentation , Foreskin/drug effects , Microfluidic Analytical Techniques , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Fibroblasts/cytology , Fibroblasts/drug effects , Foreskin/cytology , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Male , Microfluidic Analytical Techniques/instrumentation , Structure-Activity Relationship
14.
Sci Rep ; 4: 4951, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24818558

ABSTRACT

Studying human vascular disease in conventional cell cultures and in animal models does not effectively mimic the complex vascular microenvironment and may not accurately predict vascular responses in humans. We utilized a microfluidic device to recapitulate both shear stress and O2 levels in health and disease, establishing a microfluidic vascular model (µVM). Maintaining human endothelial cells (ECs) in healthy-mimicking conditions resulted in conversion to a physiological phenotype namely cell elongation, reduced proliferation, lowered angiogenic gene expression and formation of actin cortical rim and continuous barrier. We next examined the responses of the healthy µVM to a vasotoxic cancer drug, 5-Fluorouracil (5-FU), in comparison with an in vivo mouse model. We found that 5-FU does not induce apoptosis rather vascular hyperpermeability, which can be alleviated by Resveratrol treatment. This effect was confirmed by in vivo findings identifying a vasoprotecting strategy by the adjunct therapy of 5-FU with Resveratrol. The µVM of ischemic disease demonstrated the transition of ECs from a quiescent to an activated state, with higher proliferation rate, upregulation of angiogenic genes, and impaired barrier integrity. The µVM offers opportunities to study and predict human ECs with physiologically relevant phenotypes in healthy, pathological and drug-treated environments.


Subject(s)
Endothelium, Vascular/metabolism , Oxygen Consumption , Stress, Mechanical , Vascular Diseases/metabolism , Animals , Atherosclerosis/complications , Capillary Permeability/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Fluorouracil/pharmacology , Humans , Ischemia/etiology , Ischemia/metabolism , Ischemia/physiopathology , Mice , Microfluidic Analytical Techniques , Resveratrol , Stilbenes/pharmacology , Vascular Diseases/physiopathology
15.
Am J Physiol Cell Physiol ; 301(2): C431-40, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21543738

ABSTRACT

The availability of oxygen (O(2)) is a critical parameter affecting vascular tube formation. In this study, we hypothesize that dissolved oxygen (DO) levels in collagen gels change during the three-dimensional (3D) culture of human umbilical vein endothelial cells (HUVECs) in atmospheric conditions and that such changes affect the kinetics of tube formation through the production of reactive oxygen species (ROS). We demonstrate a decrease in O(2) tension during 3D cultures of HUVECs. Noninvasive measurements of DO levels during culture under atmospheric conditions revealed a profound decrease that reached as low as 2% O(2) at the end of 24 h. After media replacement, DO levels rose rapidly and equilibrated at ∼15% O(2), creating a reoxygenated environment. To accurately estimate DO gradients in 3D collagen gels, we developed a 3D mathematical model and determined the Michaelis-Menten parameters, V(max) and K(m), of HUVECs in collagen gels. We detected an increase in ROS levels throughout the culture period. Using diphenyliodonium to inhibit ROS production resulted in the complete inhibition of tube formation. Interference RNA studies further showed that hypoxia-inducible factors (HIFs)-1α and -2α are not involved in the formation of 3D tubes in collagen gels. We conclude that ROS affect the tubulogenesis process through HIFα-independent pathways, where the levels of ROS are influenced by the uncontrolled variations in DO levels. This study is the first demonstration of the critical and unexpected role of O(2) during 3D in vitro culture models of tubulogenesis in atmospheric conditions.


Subject(s)
Collagen/metabolism , Endothelial Cells/metabolism , Neovascularization, Physiologic , Oxygen/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biphenyl Compounds/pharmacology , Cell Survival , Cells, Cultured , Culture Media/metabolism , Endothelial Cells/drug effects , Gels , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kinetics , Models, Biological , Neovascularization, Physiologic/drug effects , Onium Compounds/pharmacology , Oxidative Stress , Partial Pressure , RNA Interference , Reactive Oxygen Species/metabolism , Solubility , Transfection
16.
Ann Biomed Eng ; 38(11): 3347-62, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20811954

ABSTRACT

In this study, a theoretical model was developed to predict the solute concentrations in patients' blood and optimize the efficiency of the hemodialysis operation. The model takes into account simultaneous mass and momentum transfer on the blood side both in radial and axial directions. A key component of the model is the incorporation of the protein adsorption on the inner surface of the membrane. The validity of the model was confirmed with the experimental data available in the literature for two different types of hemodiafilter. To illustrate the importance of including the radial concentration gradients and protein adsorption kinetics in the model, the experimental data were predicted with and without consideration of these effects. The results have shown that assuming uniform concentration in the radial direction or neglecting protein adsorption on the inner surface of the membrane leads to higher error in predicting the experimental data. In addition, significant error can be introduced in the calculation of the dialysis time if protein adsorption is not considered.


Subject(s)
Models, Cardiovascular , Renal Dialysis , Humans
17.
Am J Physiol Cell Physiol ; 298(6): C1527-37, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20181925

ABSTRACT

Hypoxia plays an important role in vascular development through hypoxia-inducible factor-1alpha (HIF-1alpha) accumulation and downstream pathway activation. We sought to explore the in vitro response of cultures of human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs), human endothelial progenitor cells (hEPCs), and human umbilical cord vein endothelial cells (HUVECs) to normoxic and hypoxic oxygen tensions. We first measured dissolved oxygen (DO) in the media of adherent cultures in atmospheric (21% O(2)), physiological (5% O(2)), and hypoxic oxygen conditions (1% O(2)). In cultures of both hEPCs and HUVECs, lower oxygen consumption was observed when cultured in 1% O(2). At each oxygen tension, feeder-free cultured hESCs and iPSCs were found to consume comparable amounts of oxygen. Transport analysis revealed that the oxygen uptake rate (OUR) of hESCs and iPSCs decreased distinctly as DO availability decreased, whereas the OUR of all cell types was found to be low when cultured in 1% O(2), demonstrating cell adaptation to lower oxygen tensions by limiting oxygen consumption. Next, we examined HIF-1alpha accumulation and the expression of target genes, including VEGF and angiopoietins (ANGPT; angiogenic response), GLUT-1 (glucose transport), BNIP3, and BNIP3L (autophagy and apoptosis). Accumulations of HIF-1alpha were detected in all four cell lines cultured in 1% O(2). Corresponding upregulation of VEGF, ANGPT2, and GLUT-1 was observed in response to HIF-1alpha accumulation, whereas upregulation of ANGPT1 was detected only in hESCs and iPSCs. Upregulation of BNIP3 and BNIP3L was detected in all cells after 24-h culture in hypoxic conditions, whereas apoptosis was not detectable using flow cytometry analysis, suggesting that BNIP3 and BNIP3L can lead to cell autophagy rather than apoptosis. These results demonstrate adaptation of all cell types to hypoxia but different cellular responses, suggesting that continuous measurements and control over oxygen environments will enable us to guide cellular responses.


Subject(s)
Adaptation, Physiological , Endothelial Cells/metabolism , Oxygen/metabolism , Pluripotent Stem Cells/metabolism , Umbilical Veins/metabolism , Adaptation, Physiological/genetics , Angiopoietin-1/genetics , Angiopoietin-2/genetics , Apoptosis , Autophagy , Cell Cycle , Cell Hypoxia , Cell Proliferation , Cells, Cultured , Endothelial Cells/pathology , Gene Expression Regulation , Glucose Transporter Type 1/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kinetics , Membrane Proteins/genetics , Neovascularization, Physiologic , Pluripotent Stem Cells/pathology , Proto-Oncogene Proteins/genetics , RNA, Messenger/metabolism , Tumor Suppressor Proteins/genetics , Umbilical Veins/pathology , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...