Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 5(8)2020 04 23.
Article in English | MEDLINE | ID: mdl-32191634

ABSTRACT

Acute graft-versus-host disease (aGVHD) is a T cell-mediated immunological disorder and the leading cause of nonrelapse mortality in patients who receive allogeneic hematopoietic cell transplants. Based on recent observations that protein arginine methyltransferase 5 (PRMT5) and arginine methylation are upregulated in activated memory T cells, we hypothesized that PRMT5 is involved in the pathogenesis of aGVHD. Here, we show that PRMT5 expression and enzymatic activity were upregulated in activated T cells in vitro and in T cells from mice developing aGVHD after allogeneic transplant. PRMT5 expression was also upregulated in T cells of patients who developed aGVHD after allogeneic hematopoietic cell transplant compared with those who did not develop aGVHD. PRMT5 inhibition using a selective small-molecule inhibitor (C220) substantially reduced mouse and human allogeneic T cell proliferation and inflammatory IFN-γ and IL-17 cytokine production. Administration of PRMT5 small-molecule inhibitors substantially improves survival, reducing disease incidence and clinical severity in mouse models of aGVHD without adversely affecting engraftment. Importantly, we show that PRMT5 inhibition retained the beneficial graft-versus-leukemia effect by maintaining cytotoxic CD8+ T cell responses. Mechanistically, we show that PRMT5 inhibition potently reduced STAT1 phosphorylation as well as transcription of proinflammatory genes, including interferon-stimulated genes and IL-17. Additionally, PRMT5 inhibition deregulates the cell cycle in activated T cells and disrupts signaling by affecting ERK1/2 phosphorylation. Thus, we have identified PRMT5 as a regulator of T cell responses and as a therapeutic target in aGVHD.


Subject(s)
Graft vs Host Disease/immunology , Interferons/immunology , Lymphocyte Activation/immunology , Protein-Arginine N-Methyltransferases/immunology , T-Lymphocytes/immunology , Animals , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Mice
2.
Nucleic Acids Res ; 44(17): 8395-406, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27484477

ABSTRACT

The superfamily of 3'-5' polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNA(His) guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNA(His) maturation reaction, which is distinct from the tRNA(His) maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5'-editing in vivo and in vitro, establishing template-dependent 3'-5' polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3'-5' polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3'-5' polymerases in eukaryotes.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Dictyostelium/enzymology , Biocatalysis , Dictyostelium/growth & development , Protozoan Proteins/metabolism , RNA/metabolism , RNA Editing/genetics , RNA Interference , RNA, Mitochondrial , RNA, Transfer, His/metabolism , Subcellular Fractions/enzymology , Substrate Specificity
3.
J Biol Chem ; 289(22): 15155-65, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24737330

ABSTRACT

Mitochondrial tRNA (mt-tRNA) 5'-editing was first described more than 20 years ago; however, the first candidates for 5'-editing enzymes were only recently identified in a eukaryotic microbe (protist), the slime mold Dictyostelium discoideum. In this organism, eight of 18 mt-tRNAs are predicted to be edited based on the presence of genomically encoded mismatched nucleotides in their aminoacyl-acceptor stem sequences. Here, we demonstrate that mt-tRNA 5'-editing occurs at all predicted sites in D. discoideum as evidenced by changes in the sequences of isolated mt-tRNAs compared with the expected sequences encoded by the mitochondrial genome. We also identify two previously unpredicted editing events in which G-U base pairs are edited in the absence of any other genomically encoded mismatches. A comparison of 5'-editing in D. discoideum with 5'-editing in another slime mold, Polysphondylium pallidum, suggests organism-specific idiosyncrasies in the treatment of U-G/G-U pairs. In vitro activities of putative D. discoideum editing enzymes are consistent with the observed editing reactions and suggest an overall lack of tRNA substrate specificity exhibited by the repair component of the editing enzyme. Although the presence of terminal mismatches in mt-tRNA sequences is highly predictive of the occurrence of mt-tRNA 5'-editing, the variability in treatment of U-G/G-U base pairs observed here indicates that direct experimental evidence of 5'-editing must be obtained to understand the complete spectrum of mt-tRNA editing events in any species.


Subject(s)
Dictyostelium/genetics , RNA Editing/genetics , RNA, Transfer/genetics , RNA/genetics , Base Pair Mismatch , DNA-Directed RNA Polymerases/metabolism , Dictyostelium/enzymology , Mitochondria/genetics , Myxomycetes/genetics , Nucleic Acid Conformation , RNA/chemistry , RNA, Mitochondrial , RNA, Transfer/chemistry
4.
RNA ; 17(4): 613-23, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21307182

ABSTRACT

Genes with sequence similarity to the yeast tRNA(His) guanylyltransferase (Thg1) gene have been identified in all three domains of life, and Thg1 family enzymes are implicated in diverse processes, ranging from tRNA(His) maturation to 5'-end repair of tRNAs. All of these activities take advantage of the ability of Thg1 family enzymes to catalyze 3'-5' nucleotide addition reactions. Although many Thg1-containing organisms have a single Thg1-related gene, certain eukaryotic microbes possess multiple genes with sequence similarity to Thg1. Here we investigate the activities of four Thg1-like proteins (TLPs) encoded by the genome of the slime mold, Dictyostelium discoideum (a member of the eukaryotic supergroup Amoebozoa). We show that one of the four TLPs is a bona fide Thg1 ortholog, a cytoplasmic G(-1) addition enzyme likely to be responsible for tRNA(His) maturation in D. discoideum. Two other D. discoideum TLPs exhibit biochemical activities consistent with a role for these enzymes in mitochondrial 5'-tRNA editing, based on their ability to efficiently repair the 5' ends of mitochondrial tRNA editing substrates. Although 5'-tRNA editing was discovered nearly two decades ago, the identity of the protein(s) that catalyze this activity has remained elusive. This article provides the first identification of any purified protein that appears to play a role in the 5'-tRNA editing reaction. Moreover, the presence of multiple Thg1 family members in D. discoideum suggests that gene duplication and divergence during evolution has resulted in paralogous proteins that use 3'-5' nucleotide addition reactions for diverse biological functions in the same organism.


Subject(s)
Dictyostelium/enzymology , Nucleotidyltransferases/metabolism , RNA Editing , RNA, Transfer, Amino Acyl/genetics , Amino Acid Sequence , Catalysis , Dictyostelium/genetics , Molecular Sequence Data , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , RNA, Transfer, Amino Acyl/chemistry , Sequence Alignment
5.
Proc Natl Acad Sci U S A ; 107(2): 674-9, 2010 Jan 12.
Article in English | MEDLINE | ID: mdl-20080734

ABSTRACT

The presence of an additional 5' guanosine residue (G(-1)) is a unique feature of tRNA(His). G(-1) is incorporated posttranscriptionally in eukarya via an unusual 3'-5' nucleotide addition reaction catalyzed by the tRNA(His) guanylyltransferase (Thg1). Yeast Thg1 catalyzes an unexpected second activity: Watson-Crick-dependent 3'-5' nucleotide addition that occurs in the opposite direction to nucleotide addition by all known DNA and RNA polymerases. This discovery led to the hypothesis that there are alternative roles for Thg1 family members that take advantage of this unusual enzymatic activity. Here we show that archaeal homologs of Thg1 catalyze G(-1) addition, in vitro and in vivo in yeast, but only in a templated reaction, i.e. with tRNA(His) substrates that contain a C(73) discriminator nucleotide. Because tRNA(His) from archaea contains C(73), these findings are consistent with a physiological function for templated nucleotide addition in archaeal tRNA(His) maturation. Moreover, unlike yeast Thg1, archaeal Thg1 enzymes also exhibit a preference for template-dependent U(-1) addition to A(73)-containing tRNA(His). Taken together, these results demonstrate that Watson-Crick template-dependent 3'-5' nucleotide addition is a shared catalytic activity exhibited by Thg1 family members from multiple domains of life, and therefore, that this unusual reaction may constitute an ancestral activity present in the earliest members of the Thg1 enzyme family.


Subject(s)
Nucleotidyltransferases/metabolism , RNA, Transfer, His/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Nucleic Acid Conformation , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , Phylogeny , RNA, Transfer, His/chemistry , Yeasts/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...