Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 17690, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077857

ABSTRACT

Partial migration, whereby some individuals migrate and some do not, is relatively common and widespread among animals. Switching between migration tactics (from migratory to resident or vice versa) occurs at individual and population levels. Here, we describe for the first time the movement ecology of the largest wintering population of Egyptian Vultures (Neophron percnopterus) in south-west Europe. We combined field surveys and GPS tracking data from December to February during four wintering seasons (2014-2018). The wintering population consisted on average of 85 individuals (range 58-121; 76% adults and 24% subadults). Individuals were counted at five different roosting sites located near farms, unauthorized carcass deposition sites and authorized carcass deposition sites. Our results show that vultures tend to remain close to the roosting site. Moreover, we observed that females exhibited smaller home range sizes than males, which suggests a possible differential use of food sources. Overall, birds relied more on farms than other available food resources, particularly subadult individuals which exploited more intensively these sites. Our results showed that Egyptian Vultures congregate in significant numbers at specific sites throughout the winter period in south-west Spain and that these roosting and feeding sites should be given some level of legal protection and regular monitoring. Furthermore, predictable food sources might be driving the apparent increase in the non-migratory population of Egyptian Vultures, as observed in other avian species which are also changing their migratory behavior.


Subject(s)
Animal Migration , Birds/physiology , Endangered Species , Seasons , Animals , Europe
2.
Article in English | MEDLINE | ID: mdl-21575739

ABSTRACT

Bird growth rates are usually derived from nonlinear relationships between age and some morphological structure, but this procedure may be limited by several factors. To date, nothing is known about the capacity of plasma metabolite profiling to predict chick growth rates. Based on laboratory-trials, we here develop predictive logistic models of body mass, and tarsus and wing length growth rates in Gull-billed Tern Gelochelidon nilotica chicks from measurements of plasma metabolite levels at different developmental stages. The predictive model obtained during the fastest growth period (at the age of 12 days) explained 65-68% of the chicks' growth rates, with fasting triglyceride level explaining most of the variation in growth rate. At the end of pre-fledging period, ß-hydroxybutyrate level was also a good predictor of growth rates. Finally, we carried out a field test to check the predictive capacity of the models in two colonies of wild Gull-billed Tern, comparing field-measured and model-predicted growth rates between groups. Both, measured and predicted growth rates, matched statistically. Plasma metabolite levels can thus be applied in comparative studies of chick growth rates when semi-precocial birds can be captured only once.


Subject(s)
Body Weight , Charadriiformes/growth & development , Metabolome , Models, Biological , Plasma/chemistry , Wings, Animal/growth & development , 3-Hydroxybutyric Acid/blood , Animals , Charadriiformes/metabolism , Cholesterol/blood , Logistic Models , Triglycerides/blood , Uric Acid/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...