Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 26(14): 145502, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25786069

ABSTRACT

A stepped cantilever composed of a bottom-up silicon nanowire coupled to a top-down silicon microcantilever electrostatically actuated and with capacitive or optical readout is fabricated and analyzed, both theoretically and experimentally, for mass sensing applications. The mass sensitivity at the nanowire free end and the frequency resolution considering thermomechanical noise are computed for different nanowire dimensions. The results obtained show that the coupled structure presents a very good mass sensitivity thanks to the nanowire, where the mass depositions take place, while also presenting a very good frequency resolution due to the microcantilever, where the transduction is carried out. A two-fold improvement in mass sensitivity with respect to that of the microcantilever standalone is experimentally demonstrated, and at least an order-of-magnitude improvement is theoretically predicted, only changing the nanowire length. Very close frequency resolutions are experimentally measured and theoretically predicted for a standalone microcantilever and for a microcantilever-nanowire coupled system. Thus, an improvement in mass sensing resolution of the microcantilever-nanowire stepped cantilever is demonstrated with respect to that of the microcantilever standalone.

2.
Nanotechnology ; 25(17): 175401, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24722065

ABSTRACT

We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN.

SELECTION OF CITATIONS
SEARCH DETAIL
...