Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924686

ABSTRACT

In this paper, we investigate the performance of a vehicular visible light communications (VVLC) link with a non-collimated and incoherent light source (a light-emitting diode) as the transmitter (Tx), and two different optical receiver (Rx) types (a camera and photodiode (PD)) under atmospheric turbulence (AT) conditions with aperture averaging (AA). First, we present simulation results indicating performance improvements in the signal-to-noise ratio (SNR) under AT with AA with increasing size of the optical concentrator. Experimental investigations demonstrate the potency of AA in mitigating the induced signal fading due to the weak to moderate AT regimes in a VVLC system. The experimental results obtained with AA show that the link's performance was stable in terms of the average SNR and the peak SNR for the PD and camera-based Rx links, respectively with <1 dB SNR penalty for both Rxs, as the strength of AT increases compared with the link with no AT.

2.
Sci Rep ; 9(1): 19687, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31873095

ABSTRACT

Free-Space Optical (FSO) systems offer the ability to distribute high speed digital links into remote and rural communities where terrain, installation cost or infrastructure security pose critical hurdles to deployment. A challenge in any point-to-point FSO system is initiating and maintaining optical alignment from the sender to the receiver. In this paper we propose and demonstrate a low-complexity self-aligning FSO prototype that can completely self-align with no requirement for initial manual positioning and could therefore form the opto-mechanical basis for a mesh network of optical transceivers. The prototype utilises off-the-shelf consumer electrical components and a bespoke alignment algorithm. We demonstrate an eight fibre spatially multiplexed link with a loss of 15 dB over 210 m.

SELECTION OF CITATIONS
SEARCH DETAIL
...