Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 3(6): e00310, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28626803

ABSTRACT

Destruction of the insulin-producing ß-cells is the key determinant of diabetes mellitus regardless of their types. Due to their anatomical location within the islets of Langerhans scattered throughout the pancreas, it is difficult to monitor ß-cell function and mass clinically. To this end, we propose to use a mathematical model of glucose-insulin homeostasis to estimate insulin secretion, glucose uptake by tissues, and hepatic handling of glucose. We applied the mathematical model by Lombarte et al. (2013) to compare various rate constants representing glucose-insulin homeostasis between lean (11% fat)- and high fat diet (HFD; 45% fat)-fed mice. Mice fed HFD (n = 12) for 3 months showed significantly higher body weights (49.97 ± 0.52 g vs. 29.86 ± 0.46 g), fasting blood glucose levels (213.08 ± 10.35 mg/dl vs. 121.91 ± 2.26 mg/dl), and glucose intolerance compared to mice fed lean diet (n = 12). Mice were injected with 1 g/kg glucose intraperitoneally and blood glucose levels were measured at various intervals for 120 min. We performed simulation using Arena™ software based on the mathematical model and estimated the rate constants (9 parameters) for various terms in the differential equations using OptQuest™. The simulated data fit accurately to the observed data for both lean and obese mice, validating the use of the mathematical model in mice at different stages of diabetes progression. Among 9 parameters, 5 parameters including basal insulin, k2 (rate constant for insulin-dependent glucose uptake to tissues), k3 (rate constant for insulin-independent glucose uptake to tissues), k4 (rate constant for liver glucose transfer), and Ipi (rate constant for insulin concentration where liver switches from glucose release to uptake) were significantly different between lean- and HFD-fed mice. Basal blood insulin levels, k3, and Ipi were significantly elevated but k2 and k4 were reduced in mice fed a HFD compared to those fed a lean diet. Non-invasive assessment of the key components of glucose-insulin homeostasis including insulin secretion, glucose uptake by tissues, and hepatic handling of glucose may be helpful for individualized drug therapy and designing a customized control algorithm for the artificial pancreas.

2.
Article in English | MEDLINE | ID: mdl-29527325

ABSTRACT

An injection of hydrogel-encapsulated islets that controls blood glucose levels over long term would provide a much needed alternative treatment for type 1 diabetes mellitus (T1DM). To this end, we tested the feasibility of using an injectable polyethylene glycol (PEG) hydrogel as a scaffold for islet encapsulation. Encapsulated islets cultured in vitro for 6 days showed excellent cell viability and released insulin with higher basal and stimulated insulin secretion than control islets. Host responses to PEG hydrogels were studied by injecting PEG hydrogels (no treatment and vehicle controls used) into the peritoneal cavities of B6D2F1 mice and monitoring alterations in body weight, food and water intake, and blood glucose levels. After 2 weeks, peritoneal cavity cells were harvested, followed by hydrogel retrieval, and extraction of spleens. Body weights, food and water intake, and blood glucose levels were unaltered in mice injected with hydrogels compared to no treatment and vehicle-injected control mice. Frozen sections of a hydrogel showed the presence of tissues and small number of immune cells surrounding the hydrogel but no cell infiltration into the hydrogel bulk. Spleen sizes were not significantly different under the experimental conditions. Peritoneal cavity cells were slightly higher in mice injected with hydrogels compared to control mice but no statistical difference between vehicle- and hydrogel-injected mice was noted. As an in vivo feasibility study, streptozotocin-induced diabetic mice were injected with vehicle or hydrogels containing 50 islets each into two sites, the peritoneal cavity and a subcutaneous site on the back. Transient control of blood glucose levels were observed in mice injected with hydrogels containing islets. In summary, we developed an injectable PEG hydrogel that supported islet function and survival in vitro and in vivo and elicited only a mild host response. Our work illustrates the feasibility of using injectable PEG hydrogels for islet encapsulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...