Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 6640, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31036908

ABSTRACT

We use a combined experimental and theoretical approach to study the rates of surface diffusion processes that govern early stages of thin Ag and Cu film morphological evolution on weakly-interacting amorphous carbon substrates. Films are deposited by magnetron sputtering, at temperatures TS between 298 and 413 K, and vapor arrival rates F in the range 0.08 to 5.38 monolayers/s. By employing in situ and real-time sheet-resistance and wafer-curvature measurements, we determine the nominal film thickness Θ at percolation (Θperc) and continuous film formation (Θcont) transition. Subsequently, we use the scaling behavior of Θperc and Θcont as a function of F and Ts, to estimate, experimentally, the temperature-dependent diffusivity on the substrate surface, from which we calculate Ag and Cu surface migration energy barriers [Formula: see text] and attempt frequencies [Formula: see text]. By critically comparing [Formula: see text] and [Formula: see text] with literature data, as well as with results from our ab initio molecular dynamics simulations for single Ag and Cu adatom diffusion on graphite surfaces, we suggest that: (i) [Formula: see text] and [Formula: see text] correspond to diffusion of multiatomic clusters, rather than to diffusion of monomers; and (ii) the mean size of mobile clusters during Ag growth is larger compared to that of Cu. The overall results of this work pave the way for studying growth dynamics in a wide range of technologically-relevant weakly-interacting film/substrate systems-including metals on 2D materials and oxides-which are building blocks in next-generation nanoelectronic, optoelectronic, and catalytic devices.

2.
Rev Sci Instrum ; 88(2): 023903, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28249463

ABSTRACT

A setup combining surface Brillouin light scattering with a high-temperature chamber has been developed. The temperature of the sample is controlled with a Bühler HDK chamber for optical measurements (maximum temperature of 1600 °C), in controlled atmospheres or high vacuum (10-6 mbar). This setup allows the study of sound velocity of surface acoustic waves and of the elastic constants of opaque thin films and coatings in situ as a function of temperature from surface Brillouin light scattering, by analyzing the backscattered light from the sample at a fixed angle of incidence. In this paper, we will demonstrate the applications of this setup for metallic glass thin films devitrification study and evaluation of high temperature elastic properties of hard nitride coatings. This kind of study using surface acoustic waves is rare, in contrast to those made on transparent bulk materials.

3.
Rev Sci Instrum ; 87(2): 023902, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931861

ABSTRACT

An experimental setup designed for in situ electrical resistance measurement during thin film growth is described. The custom-built sample holder with a four-point probe arrangement can be loaded into a high-vacuum magnetron sputter-deposition chamber through a load-lock transfer system, allowing measurements on series of samples without venting the main chamber. Electrical contact is ensured with circular copper tracks inserted in a Teflon plate on a mounting holder station inside the deposition chamber. This configuration creates the possibility to measure thickness-dependent electrical resistance changes with sub-monolayer resolution and is compatible with use of sample rotation during growth. Examples are presented for metallic films with high adatom mobility growing in a Volmer-Weber mode (Ag and Pd) as well as for refractory metal (Mo) with low adatom mobility. Evidence for an amorphous-to-crystalline phase transition at a film thickness of 2.6 nm is reported during growth of Mo on an amorphous Si underlayer, supporting previous findings based on in situ wafer curvature measurements.


Subject(s)
Electric Impedance , Membranes, Artificial , Models, Theoretical
4.
Environ Sci Pollut Res Int ; 19(9): 3751-62, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23054737

ABSTRACT

INTRODUCTION: In this work, we report in situ studies of UV photoelectrocatalytic discoloration of a dye (indigo carmine) by a TiO(2) thin film in a microreactor to demonstrate the driving force of the applied electrode potential and the dye flow rate toward dye discoloration kinetics. METHODS: TiO(2) 65-nm-thick thin films were deposited by PVD magnetron sputtering technique on a conducting glass substrate of fluorinated tin oxide. A microreactor to measure the discoloration rate, the electrode potential, and the photocurrent in situ, was developed. The dye solutions, before and after measurements in the microreactor, were analyzed by Raman spectroscopy. RESULTS: The annealed TiO(2) thin films had anatase structure with preferential orientation (101). The discoloration rate of the dye increased with the applied potential to TiO(2) electrode. Further, acceleration of the photocatalytic reaction was achieved by utilizing dye flow recirculation to the microreactor. In both cases the photoelectrochemical/photocatalytic discoloration kinetics of the dye follows the Langmuir-Hinshelwood model, with first-order kinetics. CONCLUSIONS: The feasibility of dye discoloration on TiO(2) thin film electrodes, prepared by magnetron sputtering using a flow microreactor system, has been clearly demonstrated. The discoloration rate is enhanced by applying a positive potential (E (AP)) and/or increasing the flow rate. The fastest discoloration and shortest irradiation time (50 min) produced 80% discoloration with an external anodic potential of 0.931 V and a flow rate of 12.2 mL min(-1).


Subject(s)
Indigo Carmine/chemistry , Photolysis , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Ultraviolet Rays
5.
Phys Rev Lett ; 104(9): 096101, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20366996

ABSTRACT

In situ stress measurements during two-dimensional growth of low mobility metal films on amorphous Si were used to demonstrate the impact of interface reactivity and phase transformation on stress evolution. Using Mo1-xSix films as examples, the results show that the tensile stress rise, which develops after the film has become crystalline, is correlated with an increase in lateral grain size. The origin of the tensile stress is attributed to the volume change resulting from the alloy crystallization, which occurs at a concentration-dependent critical thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...