Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 106(2-1): 024137, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36110016

ABSTRACT

We investigate quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator operating under the conditions of maximum Ω function, a trade-off objective function which represents a compromise between energy benefits and losses for a specific job, for both adiabatic and nonadiabatic (sudden) frequency modulations. We derive analytical expressions for the efficiency and coefficient of performance of the Otto cycle. For the case of adiabatic driving, we point out that in the low-temperature regime, the harmonic Otto engine (refrigerator) can be mapped to Feynman's ratchet and pawl model which is a steady-state classical heat engine. For the sudden switch of frequencies, we obtain loop-like behavior of the efficiency-work curve, which is characteristic of irreversible heat engines. Finally, we discuss the behavior of cooling power at maximum Ω function.

2.
Phys Rev Lett ; 124(18): 180401, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32441978

ABSTRACT

We present a fast and robust framework to prepare nonclassical states of a bosonic mode exploiting a coherent exchange of excitations with a two-level system ruled by a Jaynes-Cummings interaction mechanism. Our protocol, which is built on shortcuts to adiabaticity, allows for the generation of arbitrary Fock states of the bosonic mode, as well as coherent quantum superpositions of a Schrödinger cat-like form. In addition, we show how to obtain a class of photon-shifted states where the vacuum population is removed, a result akin to photon addition, but displaying more nonclassicality than standard photon-added states. Owing to the ubiquity of the spin-boson interaction that we consider, our proposal is amenable for implementations in state-of-the-art experiments.

3.
Phys Rev E ; 99(2-1): 022110, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30934342

ABSTRACT

We consider a finite-time Otto engine operating on a quantum harmonic oscillator and driven by shortcut-to-adiabaticity (STA) techniques to speed up its cycle. We study its efficiency and power when internal friction, time-averaged work, and work fluctuations are used as quantitative figures of merit, showing that time-averaged efficiency and power are useful cost functions for the characterization of the performance of the engine. We then use the minimum allowed time for validity of STA protocol relation to establish a physically relevant bound to the efficiency at maximum power of the STA-driven cycle.

4.
Science ; 352(6283): 325-9, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27081067

ABSTRACT

Heat engines convert thermal energy into mechanical work and generally involve a large number of particles. We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we were able to determine the thermodynamic cycles for various temperature differences of the reservoirs. We then used these cycles to evaluate the power P and efficiency η of the engine, obtaining values up to P = 3.4 × 10(-22)joules per second and η = 0.28%, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the limit of single atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...