Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1391452, 2024.
Article in English | MEDLINE | ID: mdl-38988637

ABSTRACT

Early cassava storage root formation and bulking is a medium of escape that farmers and processors tend to adopt in cases of abiotic and biotic stresses like drought, flood, and destruction by domestic animals. In this study, 220 cassava genotypes from the International Institute of Tropical Agriculture (IITA), National Root Crops Research Institute (NRCRI), International Center for Tropical Agriculture (CIAT), local farmers (from farmer's field), and NextGen project were evaluated in three locations (Umudike, Benue, and Ikenne). The trials were laid out using a split plot in a randomized incomplete block design (alpha lattice) with two replications in 2 years. The storage roots for each plant genotype were sampled or harvested at 3, 6, 9, and 12 month after planting (MAP). All data collected were analyzed using the R-statistical package. The result showed moderate to high heritability among the traits, and there were significant differences (p< 0.05) among the performances of the genotypes. The genome-wide association mapping using the BLINK model detected 45 single-nucleotide polymorphism (SNP) markers significantly associated with the four early storage root bulking and formation traits on Chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 14, 17, and 18. A total of 199 putative candidate genes were found to be directly linked to early storage root bulking and formation. The functions of these candidate genes were further characterized to regulate i) phytohormone biosynthesis, ii) cellular growth and development, and iii) biosynthesis of secondary metabolites for accumulation of starch and defense. Genome-wide association study (GWAS) also revealed the presence of four pleiotropic SNPs, which control starch content, dry matter content, dry yield, and bulking and formation index. The information on the GWAS could be used to develop improved cassava cultivars by breeders. Five genotypes (W940006, NR090146, TMS982123, TMS13F1060P0014, and NR010161) were selected as the best early storage root bulking and formation genotypes across the plant age. These selected cultivars should be used as sources of early storage root bulking and formation in future breeding programs.

2.
Front Plant Sci ; 15: 1376520, 2024.
Article in English | MEDLINE | ID: mdl-38638347

ABSTRACT

Cassava productivity is constrained by low soil nitrogen, which is predominant in most cassava-growing regions in the tropics and subtropical agroecology. Improving the low nitrogen tolerance of cassava has become an important breeding objective. The current study aimed to develop cassava varieties with improved nitrogen use efficiency by identifying genomic regions and candidate genes linked to nitrogen use efficiency in cassava. A genome-wide association study (GWAS) was performed using the Genome Association and Prediction Integrated Tool (GAPIT). A panel of 265 diverse cassava genotypes was phenotyped for 10 physiological and agronomic traits under optimum and low-nitrogen regimes. Whole-genome genotyping of these cassava cloneswas performed using the Diversity Arrays Technology (DArTseq) sequencing platform. A total of 68,814 single nucleotide polymorphisms (SNPs) were identified, which were spread across the entire 18 chromosomes of the cassava genome, of which 52 SNPs at various densities were found to be associated with nitrogen use efficiency in cassava and other yield-related traits. The putative genes identified through GWAS, especially those with significant associated SNP markers for NUE and related traits have the potential, if deployed appropriately, to develop cassava varieties with improved nitrogen use efficiency, which would translate to a reduction in the economic and environmental cost of cassava production.

3.
J Sci Food Agric ; 104(8): 4586-4595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381087

ABSTRACT

BACKGROUND: Cassava retting ability and the textural qualities of cooked fufu are important quality traits. Cassava retting is a complex process in which soaking causes tissue breakdown, starch release, and softening. The rate at which various traits linked to it evolve varies greatly during fufu processing. According to the literature, there is no standard approach for determining retting ability. The retting indices and textural properties of fufu were measured using both manual and instrumental approaches. RESULTS: Different protocols were developed to classify 64 and 11 cassava genotypes into various groups based on retting ability and textural qualities, respectively. The retting protocols revealed considerable genetic dissimilarities in genotype classification: foaming ability and water clarity should be measured at 24 h, while penetrometer, hardness, turbidity, pH, and total titratable acidity data are best collected after 36 h. The stepwise regression model revealed that pH, foaming ability, and dry matter content are the best multivariates (with the highest R2) for predicting cassava retting. These predictors were used to develop an index for assessing the retting ability of cassava genotypes. The retting index developed showed a significant relationship with dry matter content and fufu yield. The study also showed significant correlations between instrumental cohesiveness and sensory smoothness (r = -0.75), moldability (r = -0.62), and stretchability (r = 0.78). Instrumental cohesiveness can correctly estimate fufu smoothness (R2 = 0.56, P = 0.008) and stretchability (R2 = 0.60, P = 0.005). CONCLUSION: pH, foaming ability, and dry matter content are the best traits for predicting cassava retting ability, while instrumental cohesiveness can effectively estimate fufu smoothness and stretchability. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Manihot , Plant Breeding , Manihot/chemistry , Manihot/genetics , Manihot/metabolism , Genotype , Cooking , Plant Tubers/chemistry , Plant Tubers/metabolism , Starch/metabolism , Starch/chemistry , Flour/analysis , Food Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...