Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Afr ; 12: e00802, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34095639

ABSTRACT

Official case counts suggest Africa has not seen the expected burden of COVID-19 as predicted by international health agencies, and the proportion of asymptomatic patients, disease severity, and mortality burden differ significantly in Africa from what has been observed elsewhere. Testing for SARS-CoV-2 was extremely limited early in the pandemic and likely led to under-reporting of cases leaving important gaps in our understanding of transmission and disease characteristics in the African context. SARS-CoV-2 antibody prevalence and serologic response data could help quantify the burden of COVID-19 disease in Africa to address this knowledge gap and guide future outbreak response, adapted to the local context. However, such data are widely lacking in Africa. We conducted a cross-sectional seroprevalence survey among 1,192 individuals seeking COVID-19 screening and testing in central Cameroon using the Innovita antibody-based rapid diagnostic. Overall immunoglobulin prevalence was 32%, IgM prevalence was 20%, and IgG prevalence was 24%. IgM positivity gradually increased, peaking around symptom day 20. IgG positivity was similar, gradually increasing over the first 10 days of symptoms, then increasing rapidly to 30 days and beyond. These findings highlight the importance of diagnostic testing and asymptomatic SARS-CoV-2 transmission in Cameroon, which likely resulted in artificially low case counts. Rapid antibody tests are a useful diagnostic modality for seroprevalence surveys and infection diagnosis starting 5-7 days after symptom onset. These results represent the first step towards better understanding the SARS-CoV-2 immunological response in African populations.

2.
Ann Epidemiol ; 42: 64-72.e3, 2020 02.
Article in English | MEDLINE | ID: mdl-31902625

ABSTRACT

PURPOSE: In 2012, Cameroon experienced a large measles outbreak of over 14,000 cases. To determine the spatio-temporal dynamics of measles transmission in Cameroon, we analyzed weekly case data collected by the Ministry of Health. METHODS: We compared several multivariate time-series models of population movement to characterize the spatial spread of measles in Cameroon. Using the best model, we evaluated the contribution of population mobility to disease transmission at increasing geographic resolutions: region, department, and health district. RESULTS: Our spatio-temporal analysis showed that the power law model, which accounts for long-distance population movement, best represents the spatial spread of measles in Cameroon. Population movement between health districts within departments contributed to 7.6% (range: 0.4%-13.4%) of cases at the district level, whereas movement between departments within regions contributed to 16.0% (range: 1.3%-23.2%) of cases. Long-distance movement between regions contributed to 16.7% (range: 0.1%-59.0%) of cases at the region level, 20.1% (range: 7.1%-30.0%) at the department level, and 29.7% (range: 15.3%-47.6%) at the health district level. CONCLUSIONS: Population long-distance mobility is an important driver of measles dynamics in Cameroon. These findings demonstrate the need to improve our understanding of the roles of population mobility and local heterogeneity of vaccination coverage in the spread and control of measles in Cameroon.


Subject(s)
Disease Outbreaks/prevention & control , Measles Vaccine/administration & dosage , Measles/prevention & control , Measles/transmission , Vaccination Coverage , Cameroon/epidemiology , Cluster Analysis , Humans , Measles/epidemiology , Rural Population , Spatio-Temporal Analysis , Urban Population , Vaccination/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...