Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(8): 9309-9320, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434824

ABSTRACT

Zirconia-alumina-supported Ni (5Ni/10ZrO2+Al2O3) and Sr-promoted 5Ni/10ZrO2+Al2O3 are prepared, tested for carbon dioxide (CO2) methanation at 400 °C, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, surface area and porosity, infrared spectroscopy, and temperature-programmed reduction/desorption techniques. The CO2 methanation is found to depend on the dispersion of Nickel (Ni) sites as well as the extent of stabilization of CO2-interacted species. The Ni active sites are mainly derived from the reduction of 'moderately interacted NiO species'. The dispersion of Ni over 1 wt % Sr-promoted 5Ni/10ZrO2+Al2O3 is 1.38 times that of the unpromoted catalyst, and it attains 72.5% CO2 conversion (against 65% over the unpromoted catalyst). However, increasing strontium (Sr) loading to 2 wt % does not affect the Ni dispersion much, but the concentration of strong basic sites is increased, which achieves 80.6% CO2 conversion. The 5Ni4Sr/10ZrO2+Al2O3 catalyst has the highest density of strong basic sites and the highest concentration of active sites with maximum Ni dispersion. This catalyst displays exceptional performance and achieves approximately 80% CO2 conversion and 70% methane (CH4) yield for up to 25 h on steam. The unique acidic-basic profiles composed of strong basic and moderate acid sites facilitate the sequential hydrogenation of formate species in the COx-free CH4 route.

2.
Nanomaterials (Basel) ; 13(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38063681

ABSTRACT

5Ni/MgO and 5Ni/γAl2O3 are pronounced in the line of cheap catalyst systems for the dry reforming of methane. However, the lower reducibility of 5Ni/MgO and the significant coke deposition over 5Ni/γAl2O3 limit their applicability as potential DRM catalysts. The mixing capacity of MgO and Al2O3 may overcome these limitations without increasing the catalyst cost. Herein, a 5Ni/xMg(100 - x)Al (x = 0, 20, 30, 60, 70, and 100 wt. %) catalyst system is prepared, investigated, and characterized with X-ray diffraction, surface area and porosity measurements, H2-temperature programmed reduction, UV-Vis-IR spectroscopy, Raman spectroscopy, thermogravimetry, and transmission electron microscopy. Upon the addition of 20 wt. % MgO into the Al2O3 support, 5Ni/20Mg80Al is expanded and carries both stable Ni sites (derived through the reduction of NiAl2O4) and a variety of CO2-interacting species. CH4 decomposition at Ni sites and the potential oxidation of carbon deposits by CO2-interacting species over 5Ni/20Mg80Al results in a higher 61% H2-yield (against ~55% H2-yield over 5Ni/γAl2O3) with an excellent carbon-resistant property. In the major magnesia support system, the 5Ni/60Mg40Al catalyst carries stable Ni sites derived from MgNiO2 and "strongly interacted NiO-species". The H2-yield over the 5Ni/60Mg40Al catalyst moves to 71%, even against a high coke deposition, indicating fine tuning between the carbon formation and diffusion rates. Ni dispersed over magnesia-alumina with weight ratios of 7/3 and 3/7 exhibit good resistance to coke. Weight ratios of 2/8 and 7/3 contain an adequate amount of reducible and CO2-interactive species responsible for producing over 60% of H2-yield. Weight ratio 6/4 has a proper coke diffusion mechanism in addition to achieving a maximum of 71% H2-yield.

3.
ACS Omega ; 8(24): 22108-22120, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360458

ABSTRACT

Hydrogen production from dry reforming of methane (DRM) not only concerns with green energy but also involves the consumption of two greenhouse gases CH4 and CO2. The lattice oxygen endowing capacity, thermostability, and efficient anchoring of Ni has brought the attention of the DRM community over the yttria-zirconia-supported Ni system (Ni/Y + Zr). Herein, Gd-promoted Ni/Y + Zr is characterized and investigated for hydrogen production through DRM. The H2-TPR → CO2-TPD → H2-TPR cyclic experiment indicates that most of the catalytic active site (Ni) remains present during the DRM reaction over all catalyst systems. Upon Y addition, the tetragonal zirconia-yttrium oxide phase stabilizes the support. Gadolinium promotional addition up to 4 wt % modifies the surface by formation of the cubic zirconium gadolinium oxide phase, limits the size of NiO, and makes reducible NiO moderately interacted species available over the catalyst surface and resists coke deposition. The 5Ni4Gd/Y + Zr catalyst shows about ∼80% yield of hydrogen constantly up to 24 h at 800 °C.

4.
Biosensors (Basel) ; 13(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36831944

ABSTRACT

Exposure to hydroquinone (HQ) can cause various health hazards and negative impacts on the environment. Therefore, we developed an efficient electrochemical sensor to detect and quantify HQ based on palladium nanoparticles deposited in a porous silicon-polypyrrole-carbon black nanocomposite (Pd@PSi-PPy-C)-fabricated glassy carbon electrode. The structural and morphological characteristics of the newly fabricated Pd@PSi-PPy-C nanocomposite were investigated utilizing FESEM, TEM, EDS, XPS, XRD, and FTIR spectroscopy. The exceptionally higher sensitivity of 3.0156 µAµM-1 cm-2 and a low limit of detection (LOD) of 0.074 µM were achieved for this innovative electrochemical HQ sensor. Applying this novel modified electrode, we could detect wide-ranging HQ (1-450 µM) in neutral pH media. This newly fabricated HQ sensor showed satisfactory outcomes during the real sample investigations. During the analytical investigation, the Pd@PSi-PPy-C/GCE sensor demonstrated excellent reproducibility, repeatability, and stability. Hence, this work can be an effective method in developing a sensitive electrochemical sensor to detect harmful phenol derivatives for the green environment.


Subject(s)
Metal Nanoparticles , Nanocomposites , Hydroquinones/analysis , Hydroquinones/chemistry , Polymers/chemistry , Metal Nanoparticles/chemistry , Silicon , Palladium/chemistry , Pyrroles/chemistry , Soot , Porosity , Reproducibility of Results , Carbon/chemistry , Nanocomposites/chemistry , Electrodes , Electrochemical Techniques/methods
5.
Chemosphere ; 308(Pt 3): 136458, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36122747

ABSTRACT

Membrane technology has been embraced as a feasible and promising substitute to the traditional technologies employed for biodiesel synthesis which are energy and time consuming. It needs less energy, has high stability, is environmentally friendly, and is simple to operate and control. Therefore, in our current study membrane technology was employed to synthesize biodiesel from Toona ciliate novel and non-edible seed oil. Since Toona ciliata has affluent oil content (33.8%) and is effortlessly and extensively available. In fact, we intended to scrutinize the effects of green synthesized barium oxide nanoparticles for one step transesterification of biodiesel production using membrane technology followed by characterization of prepared catalyst via innovative techniques. Optimal yield of biodiesel attained was 94% at 90 °C for 150 min with methanol to oil molar ratio of 9:1 and amount of about 0.39 wt %. Quantitative analysis of synthesized Toona ciliata oil biodiesel was carried out by advance techniques of Gas chromatography mass spectrometry (GC-MS), Fourier-transform infrared (FTIR) spectroscopy and Nuclear magnetic resonance (NMR) which authorize the synthesis of fatty acid methyl ester compounds using oil from Toona ciliata seeds. Values of Toona ciliata fuel properties for instance flash point (70°C), density (0.89 kg/m3), viscosity (5.25 mm2/s), cloud point (-8°C) and pour point (-11°C) met the specifications of international standards i. e American (ASTM D-6751), European (EN-14214) and China (GB/T 20,828). Subsequently, it is concluded that membrane technology is environmentally friendly and efficient technique for mass-production of sustainable biodiesel using green nano catalyst of barium oxide.


Subject(s)
Biofuels , Toona , Barium Compounds , Biofuels/analysis , Catalysis , Esterification , Esters/analysis , Fatty Acids/analysis , Methanol/analysis , Oxides , Plant Oils/chemistry , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...