Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36987161

ABSTRACT

Recently, polymeric nanofiber veils have gained lot of interest for various industrial and research applications. Embedding polymeric veils has proven to be one of the most effective ways to prevent delamination caused by the poor out-of-plane properties of composite laminates. The polymeric veils are introduced between plies of a composite laminate, and their targeted effects on delamination initiation and propagation have been widely studied. This paper presents an overview of the application of nanofiber polymeric veils as toughening interleaves in fiber-reinforced composite laminates. It presents a systematic comparative analysis and summary of attainable fracture toughness improvements based on electrospun veil materials. Both Mode I and Mode II tests are covered. Various popular veil materials and their modifications are considered. The toughening mechanisms introduced by polymeric veils are identified, listed, and analyzed. The numerical modeling of failure in Mode I and Mode II delamination is also discussed. This analytical review can be used as guidance for veil material selection, for estimation of the achievable toughening effect, for understanding the toughening mechanism introduced by veils, and for the numerical modeling of delamination.

2.
Polymers (Basel) ; 15(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36987354

ABSTRACT

The problem of icing for surfaces of engineering structures requires attention more and more every year. Active industrialization in permafrost zones is currently underway; marine transport in Arctic areas targets new goals; the requirements for aerodynamically critical surfaces of wind generators and aerospace products, serving at low temperatures, are increasing; and fiber-reinforced polymer composites find wide applicability in these structural applications demanding the problem of anti/de-icing to be addressed. The traditional manufacturing approaches are superimposed with the new technologies, such as 3D printers and robotics for laying heat wires or cheap and high-performance Thermal Sprayed methods for metallic cover manufacturing. Another next step in developing heaters for polymer structures is nano and micro additives to create electrically conductive heating networks within. In our study, we review and comparatively analyze the modern technologies of structure heating, based on resistive heating composites.

3.
Polymers (Basel) ; 15(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36771980

ABSTRACT

Temperature dependence of electrical conductivity/resistivity of CNT networks (dry or impregnated), which is characterised by a temperature coefficient of resistance (TCR), is experimentally observed to be negative, especially for the case of aligned CNT (A-CNT). The paper investigates the role of three phenomena defining the TCR, temperature dependence of the intrinsic conductivity of CNTs, of the tunnelling resistance of their contacts, and thermal expansion of the network, in the temperature range 300-400 K. A-CNT films, created by rolling down A-CNT forests of different length and described in Lee et al., Appl Phys Lett, 2015, 106: 053110, are investigated as an example. The modelling of the electrical conductivity is performed by the nodal analysis of resistance networks, coupled with the finite-element thermomechanical modelling of network thermal expansion. The calculated TCR for the film is about -0.002 1/K and is close to the experimentally observed values. Comparative analysis of the influence of the TCR defining phenomena is performed on the case of dry and impregnated films. The analysis shows that in both cases, for an A-CNT film at the studied temperature interval, the main factor affecting a network's TCR is the TCR of the CNTs themselves. The TCR of the tunnelling contacts plays the secondary role; influence of the film thermal expansion is marginal. The prevailing impact of the intrinsic conductivity TCR on the TCR of the film is explained by long inter-contact segments of CNTs in an A-CNT network, which define the homogenised film conductivity.

4.
Polymers (Basel) ; 15(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36679312

ABSTRACT

The temperature coefficient of resistance (TCR) determines the electrical performance of materials in electronics. For a carbon nanotube (CNT) nanocomposite, change of resistivity with temperature depends on changes in CNT intrinsic conductivity, tunnelling thresholds and distances, matrix' coefficient of thermal expansion, and other factors. In our study, we add one more influencing factor-the degree of cure. Complexities of the curing process cause difficulties to predict, or even measure, the curing state of the polymer matrix while uncertainty in the degree of cure influences TCR measurements leading to biased values. Here we study the influence of the cure state on the TCR of a single-walled CNT/epoxy polymer nanocomposite. For the given degree of cure, TCR measurements are conducted in the temperature range 25-100 °C, followed by the next 24 h of post-curing and a new cycle of measurements, 8 cycles in total. We find that contrary to industry practice to expect a high degree of cure after 3 h at 130 °C, the curing process is far from reaching the steady state of the material and continues at least for the next 72 h at 120 °C, as we observe by changes in the material electrical resistivity. If TCR measurements are conducted in this period, we find them significantly influenced by the post-curing process continuing in parallel, leading in particular to non-monotonic temperature dependence and the appearance of negative values. The unbiased TCR values we observe only when the material reaches the steady state are no longer influenced by the heat input. The dependence becomes steady, monotonically increasing from near zero value at room temperature to 0.001 1/°C at 100 °C.

5.
Polymers (Basel) ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432921

ABSTRACT

Electrical conductivity and piezoresistivity of carbon nanotube (CNT) nanocomposites are analyzed by nodal analysis for aligned and random CNT networks dependent on the intrinsic CNT conductivity and tunneling barrier values. In the literature, these parameters are assigned with significant uncertainty; often, the intrinsic resistivity is neglected. We analyze the variability of homogenized conductivity, its sensitivity to deformation, and the validity of the assumption of zero intrinsic resistivity. A fast algorithm for simulation of a gauge factor is proposed. The modelling shows: (1) the uncertainty of homogenization caused by the uncertainty in CNT electrical properties is higher than the uncertainty, caused by the nanocomposite randomness; (2) for defect-prone nanotubes (intrinsic conductivity ~104 S/m), the influence of tunneling barrier energy on both the homogenized conductivity and gauge factor is weak, but it becomes stronger for CNTs with higher intrinsic conductivity; (3) the assumption of infinite intrinsic conductivity (defect-free nanotubes) has strong influence on the homogenized conductivity.

6.
Polymers (Basel) ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432922

ABSTRACT

As technology advances toward ongoing circuit miniaturization and device size reduction followed by improved power density, heat dissipation is becoming a key challenge for electronic equipment. Heat accumulation can be prevented if the heat from electrical equipment is efficiently exported, ensuring a device's lifespan and dependability and preventing otherwise possible mishaps or even explosions. Hence, thermal management applications, which include altering the role of aerogels from thermally insulative to thermally conductive, have recently been a hot topic for 3D-aerogel-based thermal interface materials. To completely comprehend three-dimensional (3D) networks, we categorized and comparatively analyzed aerogels based on carbon nanomaterials, namely fibers, nanotubes, graphene, and graphene oxide, which have capabilities that may be fused with boron nitride and impregnated for better thermal performance and mechanical stability by polymers, including epoxy, cellulose, and polydimethylsiloxane (PDMS). An alternative route is presented in the comparative analysis by carbonized cellulose. As a result, the development of structurally robust and stiff thermally conductive aerogels for electronic packaging has been predicted to increase polymer thermal management capabilities. The latest trends include the self-organization of an anisotropic structure on several hierarchical levels within a 3D framework. In this study, we highlight and analyze the recent advances in 3D-structured thermally conductive aerogels, their potential impact on the next generation of electronic components based on advanced nanocomposites, and their future prospects.

7.
Polymers (Basel) ; 14(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365637

ABSTRACT

Changes in the fibrous microstructure in glass fiber/epoxy prepreg quasi-isotropic laminates after the introduction of embedded sensors in the form of "nanostitch" as interleaves are investigated using 3D imaging with synchrotron radiation computer tomography (SRCT). Nanostitch interfaces are created by aligned carbon nanotubes (CNTs) with two different morphologies. The laminates are fabricated using an autoclave. The investigated microstructural features include: thickness variability of the plies and laminate, resin rich gaps at the interfaces, presence of voids, and misorientation of plies and misalignment of fibers deep inside the plies and close to the ply interfaces. The analysis of the SRCT images, at a resolution of 0.65 µm, shows the following: (1) the laminate preserves its thickness, with a resin/CNT-rich gap of ~5 µm created at the interface and the plies compacted by nano-capillarity; (2) there are no voids with sizes over 1-2 µm both in the baseline and nanostitched laminates; (3) the misorientation of plies (the in-plane difference of the average fiber direction from the nominal ply angle) is under 2°; (4) the misalignment (standard deviation of fiber orientations) has the same characteristics in the baseline and nanostitched laminates: it is in the range of 1.5°-3° in-plane and 2°-4° out-of-plane; the misalignment close to interfaces is increased in comparison with the misalignment deep within plies by ~1°. We conclude that the embedment of the nanostitch sensor does not alter the microstructural parameters of the laminate.

8.
Polymers (Basel) ; 14(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36015573

ABSTRACT

In this study, three-dimensional (3D) polyvinyl alcohol (PVA)/aligned boron nitride (BN) aerogel framework nanocomposites with high performance were fabricated by a facile strategy. The boron nitride powder was initially hydrolyzed and dispersed with a chemically crosslinked plasticizer, diethyl glycol (DEG), in the PVA polymer system. The boron nitride and DEG/PVA suspensions were then mixed well with different stoichiometric ratios to attain BN/PVA nanocomposites. Scanning electron microscopy revealed that BN platelets were well dispersed and successfully aligned/oriented in one direction in the PVA matrix by using a vacuum-assisted filtration technique. The formed BN/PVA aerogel cake composite showed excellent in-plane and out-of-plane thermal conductivities of 0.76 W/mK and 0.61 W/mK with a ratio of BN/PVA of (2:1) in comparison with 0.15 W/mK for the pure PVA matrix. These high thermal conductivities of BN aerogel could be attributed to the unidirectional orientation of boron nitride nanoplatelets with the post-two days vacuum drying of the specimens at elevated temperatures. This aerogel composite is unique of its kind and displayed such high thermal conductivity of the BN/PVA framework without impregnation by any external polymer. Moreover, the composites also presented good wettability results with water and displayed high electrical resistivity of ~1014 Ω cm. These nanocomposites thus, with such exceptional characteristics, have a wide range of potential uses in packaging and electronics for thermal management applications.

9.
Nanomaterials (Basel) ; 11(1)2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33435220

ABSTRACT

In this work, the piezoresistive effect for a polymer nanocomposite with a highly segregated distribution of conductive filler was investigated. As a base polymer for the investigated nanocomposites, ultrahigh-molecular-weight polyethylene, processed in a solid state (below melting point), was used. Multiwalled carbon nanotubes (MWCNTs) were used as a nanofiller forming a highly segregated structure in between polymer particles. A numerical multiscale approach based on the finite element method was proposed to predict changes in the conductive structure composed of MWCNTs in response to uniaxial deformation of the material. At the nanoscale, numerical simulations were conducted for uniformly distributed MWCNTs providing confinement of the filler to a two-dimensional layer with a high volume fraction of the filler in between two polymer particles. At the microscale, the piezoresistive response to uniaxial deformation for the three-dimensional highly segregated structure reconstructed from experimental data was investigated numerically. The embedded element method was implemented to conduct a realistic and computationally efficient simulation of MWCNT behavior during deformation of the nanocomposite. The results of numerical simulations were compared with the experimental data to prove the correctness of assumptions used in the modeling.

SELECTION OF CITATIONS
SEARCH DETAIL
...