Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 183: 105800, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36413923

ABSTRACT

Ichthyotoxic algal blooms cause economic losses throughout the world. However, the mechanisms and molecules proposed so far fail to explain the massiveness of these events. In this research, the allelopathic effect of two bloom-forming species (the raphidophyte Heterosigma akashiwo and dinoflagellate Alexandrium catenella) was evaluated between them and with Rhodomonas salina bioassay. Mono- and co-cultures were carried out with the aim of providing evidence of the relation between allelopathy and ichthyotoxicity. The allelopathic inhibitory effect of the A. catenella's supernatant was significantly enhanced when supernatants were obtained from co-cultures with direct contact between these species. We could not observe any allelopathic response provoked by H. akashiwo. On the other hand, A. catenella was able to decrease the cell concentration of H. akashiwo and R. salina. Besides, allelopathy and ichthyotoxicity were found for A. catenella's supernant, being the allelopathic effect not related to saxitoxin. These results reinforce the hypothesis that the allelopathic effect being regulated by the presence of other microalgae and could be responsible for ichthyotoxicity.


Subject(s)
Dinoflagellida , Microalgae , Stramenopiles , Dinoflagellida/physiology , Allelopathy , Stramenopiles/physiology , Eutrophication , Harmful Algal Bloom
2.
Toxicol In Vitro ; 72: 105092, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33440187

ABSTRACT

The Neuro-2a cell assay has been a promising in vitro alternative for the detection of saxitoxin (STX)-like toxins. However, its application is problematic in samples with complex matrices containing different toxins, whose mechanisms of action could be antagonistic. In the search of alternative procedures that reduce or avoid this interference, we evaluated the transcriptional modulation produced by a 24-h exposure to STX in Neuro-2a cells under three conditions: exposure to STX (33 nM), a mussel meat matrix (12.5 mg meat/mL) and a fortified sample (STX-fortified matrix). Differential gene expression was evaluated by RNA-seq after Illumina high-throughput sequencing, and data were analyzed to identify genes differentially expressed regardless of the matrix. From the 9487 identified genes, 213 were differentially expressed of these, 10 genes were identified as candidate markers for STX detection due to their regulation by STX regardless of the matrix interference. Expression dynamics of 7 of these candidate genes (Fgf-1, Adgrb2, Tfpt, Zfr2, Nup 35, Fam195a, and Dusp7) was further evaluated by qRT-PCR analysis of cells exposed to different concentrations of STX for up to 24 h. A downregulation of some markers expression was observed, namely Nup35 (involved in nucleo-cytoplasmic transporter activity) and Zfr-2 (involved in nucleic acids binding), whereas Fgf-1 (apoptosis signaling) was significantly upregulated. Markers' expression was not influenced by the matrix, suggesting that gene expression variations are directly related to STX response. These results support the potential of these genes as biomarkers for the development of an alternative STX-like toxins screening method.


Subject(s)
Gene Expression/drug effects , High-Throughput Nucleotide Sequencing/methods , Saxitoxin/toxicity , Animals , Biomarkers , Cell Survival/drug effects , Mytilus , Shellfish
3.
Article in English | MEDLINE | ID: mdl-31638869

ABSTRACT

There are two official PSP detection methods (mouse bioassay and HLPC-FLD) and a number of alternative methods. Ethical considerations have led to regulations being adopted in some countries that limit or prohibit the application of mouse bioassay. Analytical methodologies (e.g. HPLC-FLD or LC-MSMS) have the disadvantages of not being able to detect new toxins or analogues or reflecting the overall toxicity of the sample. In addition, they require highly trained personnel and expensive equipment, which are not always available. In this work, we have evaluated a method based on the Neuro-2a cell-based assay to detect substances that inhibit voltage-dependent sodium channels (Manger's method). We tested PSP standards and natural samples contaminated with PSP. Here we demonstrate that the adapted Manger's method is suitable for calculating Toxicity Equivalency Factors (TEF) for STX-analogues. The method was shown to be useful for screening contaminated natural samples in concentrations above the regulatory limit for these toxins (80 µg STX equivalents/100 g shellfish). We were able to detect PSP in 19 natural mollusc samples from South Chile despite the presence of other marine toxins. These preliminary results suggest that the method could be used as a first step in screening programmes.


Subject(s)
Food Analysis , Food Contamination/analysis , Saxitoxin/analysis , Saxitoxin/toxicity , Seafood/analysis , Seafood/toxicity , Animals , Cell Line , Cell Survival/drug effects , Chile , Dose-Response Relationship, Drug , Mice , Shellfish , Shellfish Poisoning
4.
Article in English | MEDLINE | ID: mdl-27002718

ABSTRACT

Detecting marine biotoxins such as paralytic shellfish toxins (PSTs) is essential to ensuring the safety of seafood. The mouse bioassay is the internationally accepted method for monitoring PSTs, but technical and ethical issues have led to a search for new detection methods. The mouse neuroblastoma cell-based assay (Neuro-2a CBA) using ouabain and veratridine (O/V) has proven useful for the detection of PSTs. However, CBAs are sensitive to shellfish-associated matrix interferences. As the extraction method highly influences matrix interferences, this study compared three extraction protocols: Association of Official Analytical Chemists (AOAC) 2005.06, AOAC 2011.02 and an alternative liquid-liquid method. These methods were used to assess the matrix effect of extracts from four commercially important bivalve species (Chilean mussel, Magellan mussel, clam and Pacific oyster) in Neuro-2a CBA. Extracts from all three protocols caused a toxic effect in Neuro-2a cells (without O/V) when tested at a concentration of 25 mg of tissue-equivalent (TE) ml(-1). The greatest toxicity was obtained through the AOAC 2011.02 protocol, especially for the Chilean mussel and Pacific oyster extracts. Similar toxicity levels (less than 15%) were observed in all extracts at 3.1 mg TE ml(-1). When assessed in Neuro-2a CBA, AOAC 2005.06 extracts presented the lowest matrix interferences, while the highest interferences were observed for AOAC 2011.02 in Magellan mussel and clam extracts. Finally, the AOAC 2005.06 and alternative protocols were compared using Chilean mussel samples fortified with 40 and 80 µg STX per 100 g meat. The AOAC 2005.06 method demonstrated better results. In conclusion, the AOAC 2005.06 extracts exhibited the fewest interferences in the Neuro-2a CBA. Therefore, this extraction method should be considered for the implementation of Neuro-2a CBA as a high-throughput screening methodology for PST detection.


Subject(s)
Bivalvia/chemistry , Extracellular Matrix/chemistry , Food Contamination , Food Inspection/methods , Marine Toxins/analysis , Neurons/drug effects , Shellfish/analysis , Animal Testing Alternatives , Animals , Bivalvia/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Chile , Extracellular Matrix/metabolism , Food Contamination/prevention & control , High-Throughput Screening Assays , Liquid-Liquid Extraction , Marine Toxins/biosynthesis , Marine Toxins/toxicity , Mice , Neurons/pathology , Reproducibility of Results , Saxitoxin/analysis , Saxitoxin/biosynthesis , Saxitoxin/toxicity , Shellfish/adverse effects , Shellfish Poisoning/etiology , Shellfish Poisoning/pathology , Shellfish Poisoning/prevention & control , Species Specificity , Tissue Extracts/analysis , Tissue Extracts/isolation & purification , Tissue Extracts/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...