Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 325, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717668

ABSTRACT

Actinomycetota have been widely described as valuable sources for the acquisition of secondary metabolites. Most microbial metabolites are produced via metabolic pathways encoded by biosynthetic gene clusters (BGCs). Although many secondary metabolites are not essential for the survival of bacteria, they play an important role in their adaptation and interactions within microbial communities. This is how bacteria isolated from extreme environments such as Antarctica could facilitate the discovery of new BGCs with biotechnological potential. This study aimed to isolate rare Actinomycetota strains from Antarctic soil and sediment samples and identify their metabolic potential based on genome mining and exploration of biosynthetic gene clusters. To this end, the strains were sequenced using Illumina and Oxford Nanopore Technologies platforms. The assemblies were annotated and subjected to phylogenetic analysis. Finally, the BGCs present in each genome were identified using the antiSMASH tool, and the biosynthetic diversity of the Micrococcaceae family was evaluated. Taxonomic annotation revealed that seven strains were new and two were previously reported in the NCBI database. Additionally, BGCs encoding type III polyketide synthases (T3PKS), beta-lactones, siderophores, and non-ribosomal peptide synthetases (NRPS) have been identified, among others. In addition, the sequence similarity network showed a predominant type of BGCs in the family Micrococcaceae, and some genera were distinctly grouped. The BGCs identified in the isolated strains could be associated with applications such as antimicrobials, anticancer agents, and plant growth promoters, among others, positioning them as excellent candidates for future biotechnological applications and innovations. KEY POINTS: • Novel Antarctic rare Actinomycetota strains were isolated from soil and sediments • Genome-based taxonomic affiliation revealed seven potentially novel species • Genome mining showed metabolic potential for novel natural products.


Subject(s)
Geologic Sediments , Multigene Family , Phylogeny , Soil Microbiology , Antarctic Regions , Geologic Sediments/microbiology , Secondary Metabolism/genetics , Actinobacteria/genetics , Actinobacteria/metabolism , Actinobacteria/classification , Genome, Bacterial , Biotechnology/methods , Biosynthetic Pathways/genetics , Peptide Synthases/genetics , Peptide Synthases/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism
2.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894923

ABSTRACT

Obtaining sufficient and high-quality genomic DNA from sludge samples is a fundamental issue of feasibility and comparability in genomic studies of microbial diversity. Commercial kits for soil are often used for the extraction of gDNA from sludge samples due to the lack of specific kits. However, the evaluation of the performance of commercial kits for sludge DNA extraction is scarce and optimization of these methods to obtain a high quantity and quality of DNA is necessary, especially for downstream genomic sequencing. Sequential batch reactors (SBRs) loaded with lignocellulosic biomass are used for the synthesis of renewable resources such as levulinic acid (LA), adipic acid (AA), and polyhydroxyalkanoates (PHAs), and the biochemical synthesis of these compounds is conducted through the inoculation of microbes present in the residual activated sludge (AS) obtained from a municipal wastewater treatment plant. To characterize these microbes, the extraction of DNA from residual sewage sludge was conducted with three different commercial kits: Nucleospin® Soil from Macherey-Nagel, DNEasy® PowerSoil® from Qiagen, and E.Z.N.A.® Plant DNA Kit from Omega BIO-TEK. Nevertheless, to obtain the highest load and quality of DNA for next-generation sequencing (NGS) analysis, different pretreatments and different combinations of these pretreatments were used. The pretreatments considered were an ultrasonic bath and a temperature of 80 °C, together and separately with different incubation time periods of 30, 60, and 90 min. The results obtained suggest a significant improvement in the efficiency and quality of DNA extraction with the three commercial extraction kits when used together with the ultrasonic bath and 80 °C for 60 min. Here, we were able to prove that physical pretreatments are a viable alternative to chemical lysis for DNA extraction from complex samples such as sludge.


Subject(s)
DNA , Sewage , DNA, Bacterial/genetics , Genomics , Soil
3.
J Infect ; 87(2): 103-110, 2023 08.
Article in English | MEDLINE | ID: mdl-37178807

ABSTRACT

BACKGROUND: Human metapneumovirus (HMPV) is an important aetiologic agent of respiratory tract infection (RTI). This study aimed to describe the prevalence, genetic diversity, and evolutionary dynamics of HMPV. METHODS: Laboratory-confirmed HMPV were characterised based on partial-coding G gene sequences with MEGA.v6.0. WGS was performed with Illumina, and evolutionary analyses with Datamonkey and Nextstrain. RESULTS: HMPV prevalence was 2.5%, peaking in February-April and with an alternation in the predominance of HMPV-A and -B until the emergence of SARS-CoV-2, not circulating until summer and autumn-winter 2021, with a higher prevalence and with the almost only circulation of A2c111dup. G and SH proteins were the most variable, and 70% of F protein was under negative selection. Mutation rate of HMPV genome was 6.95 × 10-4 substitutions/site/year. CONCLUSION: HMPV showed a significant morbidity until the emergence of SARS-CoV-2 pandemic in 2020, not circulating again until summer and autumn 2021, with a higher prevalence and with almost the only circulation of A2c111dup, probably due to a more efficient immune evasion mechanism. The F protein showed a very conserved nature, supporting the need for steric shielding. The tMRCA showed a recent emergence of the A2c variants carrying duplications, supporting the importance of virological surveillance.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Humans , Infant , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Spain/epidemiology , Genotype , COVID-19/epidemiology , SARS-CoV-2/genetics , Respiratory Tract Infections/epidemiology , Phylogeny
4.
Curr Opin Biotechnol ; 80: 102897, 2023 04.
Article in English | MEDLINE | ID: mdl-36736005

ABSTRACT

The cause of harmful algal blooms has been a mystery, but research to elucidate its mechanism has progressed over the years thanks to genetic technologies. We have monitored toxic algae and its associated bacteria as a community, the so-called 'holobiont' in Chilean coastal waters for years from the perspective of bacteria as an algal bloom driver. This review describes the challenges of holobiont monitoring, specifically with respect to standardizing and compliance with the monitoring protocols to collect reliable and sustainable data. Further, we suggest adopting the high-throughput sequencing (HTS) standard operating procedure (SOP) by the International Human Microbiome to improve the quality and consistency of holobiont monitoring in the harmful algal world.


Subject(s)
Bacteria , Harmful Algal Bloom , Humans , Environmental Monitoring
5.
Front Microbiol ; 13: 806576, 2022.
Article in English | MEDLINE | ID: mdl-35126341

ABSTRACT

In recent years, epidemiological studies of infectious agents have focused mainly on the pathogen and stable components of its genome. The use of these stable components makes it possible to know the evolutionary or epidemiological relationships of the isolates of a particular pathogen. Under this approach, focused on the pathogen, the identification of resistance genes is a complementary stage of a bacterial characterization process or an appendix of its epidemiological characterization, neglecting its genetic components' acquisition or dispersal mechanisms. Today we know that a large part of antibiotic resistance is associated with mobile elements. Corynebacterium striatum, a bacterium from the normal skin microbiota, is also an opportunistic pathogen. In recent years, reports of infections and nosocomial outbreaks caused by antimicrobial multidrug-resistant C. striatum strains have been increasing worldwide. Despite the different existing mobile genomic elements, there is evidence that acquired resistance genes are coupled to insertion sequences in C. striatum. This perspective article reviews the insertion sequences linked to resistance genes, their relationship to evolutionary lineages, epidemiological characteristics, and the niches the strains inhabit. Finally, we evaluate the potential of the insertion sequences for their application as a descriptor of epidemiological scenarios, allowing us to anticipate the emergence of multidrug-resistant lineages.

6.
Biotechnol Rep (Amst) ; 33: e00704, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35145887

ABSTRACT

Shewanella is a microbial group with high potential to be applied in textile effluents bioremediation due to its ability to use a wide variety of substrates as a final electron acceptor in respiration. The present research aimed to describe a new strain, Shewanella algae 2NE11, a decolorizing bacterium isolated from industrial effluent in Peru. S. algae 2NE11 showed an optimal growth under pH 6-9, temperature between 30-40 °C, and 0-4 % NaCl. It can tolerate high concentrations of NaCl until 10% and low temperatures as 4 °C. It decolorizes azo and anthraquinone dyes with a decolorization rate of 89-97%. We performed next-generation sequencing (Pacific Bioscience®) and achieved its complete genome sequence with a length of 5,030,813bp and a GC content of 52.98%. Genomic characterization revealed the presence of protein-coding genes related to decolorization like azoreductase, dyp-peroxidase, oxidoreductases, and the complete Mtr respiratory pathway. Likewise, we identified other properties such as the presence of metal resistant genes, and genes related to lactate and N-acetylglucosamine metabolism. These results highlight its potential to be applied in the bioremediation of textile effluents and guide future research on decolorization metabolic pathways.

7.
Cancers (Basel) ; 13(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073836

ABSTRACT

The Epstein-Barr virus (EBV) is a globally dispersed pathogen involved in several human cancers of B-cell and non-B-cell origin. EBV has been classified into EBV-1 and EBV-2, which have differences in their transformative ability. EBV-1 can transform B-cells into LCL more efficiently than EBV-2, and EBV-2 preferentially infects T-cell lymphocytes. The EBNA3A oncoprotein is a transcriptional regulator of virus and host cell genes, and is required in order to transform B-cells. EBNA3A has six peptide motifs called nuclear localization signals (NLSs) that ensure nucleocytoplasmic protein trafficking. The presence of multiple NLSs has been suggested to enhance EBNA3 function or different specificities in different cell types. However, studies about the NLS variability associated with EBV types are scarce. Based on a systematic sequence analysis considering more than a thousand EBNA3A sequences of EBV from different human clinical manifestations and geographic locations, we found differences in NLSs' nucleotide structures among EBV types. Compared with the EBNA3A EBV-1, EBNA3A EBV-2 has two of the six NLSs altered, and these mutations were possibly acquired by recombination. These genetic patterns in the NLSs associated with EBV-1 and EBV-2 provide new information about the traits of EBNA3A in EBV biology.

8.
Rev. peru. biol. (Impr.) ; 28(1): e19743, Jan-Mar 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1289879

ABSTRACT

Abstract Acidithiobacillus ferrivorans is a psychrotolerant acidophile capable of growing and oxidizing ferrous and sulphide substrates at low temperatures. To date, six genomes of this organism have been characterized; however, evidence of a plasmid in this species has been reported only once, whereby there is no conclusive role of the plasmids in the species. Herein, two novel plasmids of A. ferrivorans PQ33 were molecularly characterized and compared at a genomic scale. The genomes of two plasmids (12 kbp and 10 kbp) from A. ferrivorans PQ33 (NZ_LVZL01000000) were sequenced and annotated. The plasmids, named pAfPQ33-1 (NZ_CP021414.1) and pAfPQ33-2 (NZ_CP021415.1), presented 9 CDS and 13 CDS, respectively. In silico analysis showed proteins involved in conjugation (TraD, MobA, Eep and XerD), toxin-antitoxin systems (HicA and HicB), replication (RepA and DNA binding protein), transcription regulation (CopG), chaperone DnaJ, and a virulence gene (vapD). Furthermore, the plasmids contain sequences similar to phosphate-selective porins O and P and a diguanylate cyclase-phosphodiesterase protein. The presence of these genes suggests the possibility of horizontal transfer, a regulatory system of plasmid maintenance, and adhesion to substrates for A. ferrivorans species and PQ33. This is the first report of plasmids in this strain.


Resumen Acidithiobacillus ferrivorans es un acidófilo psicrotolerante capaz de hacer crecer y oxidar sustratos ferrosos y sulfurosos a bajas temperaturas. Hasta la fecha se han caracterizado seis genomas de este organismo; sin embargo, la evidencia de un plásmido en esta especie ha sido informado solo una vez, por lo que no hay un rol concluyente de los plásmidos en la especie. Aquí, dos plásmidos novedosos de A. ferrivorans PQ33 se caracterizaron molecularmente y se compararon a escala genómica. Se secuenciaron y anotaron los genomas de dos plásmidos (12 kpb y 10 kpb) de A. ferrivorans PQ33 (NZ_LVZL01000000). Los plásmidos, denominados pAfPQ33-1 (NZ_CP021414.1) y pAfPQ33-2 (NZ_CP021415.1), presentaron 9 CDS y 13 CDS, respectivamente. El análisis in silico mostró proteínas involucradas en la conjugación (TraD, MobA, Eep y XerD), sistemas de toxina-antitoxina (HicA y HicB), replicación (RepA y proteína de unión al ADN), regulación de la transcripción (CopG), chaperona DnaJ y un gen de virulencia (vapD). Además, los plásmidos contienen secuencias similares a las porinas selectivas de fosfato O y P y una proteína diguanilato ciclasa-fosfodiesterasa. La presencia de estos genes sugiere la posibilidad de transferencia horizontal, un sistema regulador de mantenimiento de plásmidos y adhesión a sustratos para especies de A. ferrivorans y PQ33. Este es el primer informe de plásmidos en esta cepa.

9.
Cancers (Basel) ; 12(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971738

ABSTRACT

Colorectal cancer is a heterogeneous disease caused by both genetic and epigenetics factors. Analysing DNA methylation changes occurring during colorectal cancer progression and metastasis formation is crucial for the identification of novel epigenetic markers of patient prognosis. Genome-wide methylation sequencing of paired samples of colon (normal adjacent, primary tumour and lymph node metastasis) showed global hypomethylation and CpG island (CGI) hypermethylation of primary tumours compared to normal. In metastasis we observed high global and non-CGI regions methylation, but lower CGI methylation, compared to primary tumours. Gene ontology analysis showed shared biological processes between hypermethylated CGIs in metastasis and primary tumours. After complementary analysis with The Cancer Genome Atlas (TCGA) cohort, FIGN, HTRA3, BDNF, HCN4 and STAC2 genes were found associated with poor survival. We mapped the methylation landscape of colon normal tissues, primary tumours and lymph node metastasis, being capable of identified methylation changes throughout the genome. Furthermore, we found five genes with potential for methylation biomarkers of poor prognosis in colorectal cancer patients.

10.
Emerg Infect Dis ; 26(2): 323-326, 2020 02.
Article in English | MEDLINE | ID: mdl-31961301

ABSTRACT

We report transcontinental expansion of Vibrio parahaemolyticus sequence type 36 into Lima, Peru. From national collections, we identified 7 isolates from 2 different Pacific Northwest complex lineages that surfaced during 2011-2016. Sequence type 36 is likely established in environmental reservoirs. Systematic surveillance enabled detection of these epidemic isolates.


Subject(s)
Vibrio Infections/epidemiology , Vibrio parahaemolyticus/isolation & purification , Demography , Disease Outbreaks , Humans , Molecular Epidemiology , Peru/epidemiology , Vibrio Infections/microbiology , Vibrio parahaemolyticus/genetics
11.
Sci Rep ; 9(1): 9829, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31285478

ABSTRACT

The Epstein-Barr virus (EBV) infects more than 90% of the human population, playing a key role in the origin and progression of malignant and non-malignant diseases. Many attempts have been made to classify EBV according to clinical or epidemiological information; however, these classifications show frequent incongruences. For instance, they use a small subset of genes for sorting strains but fail to consider the enormous genomic variability and abundant recombinant regions present in the EBV genome. These could lead to diversity overestimation, alter the tree topology and misinterpret viral types when classified, therefore, a reliable EBV phylogenetic classification is needed to minimize recombination signals. Recombination events occur 2.5-times more often than mutation events, suggesting that recombination has a much stronger impact than mutation in EBV genomic diversity, detected within common ancestral node positions. The Hierarchical Bayesian Analysis of Population Structure (hierBAPS) resulted in the differentiation of 12 EBV populations showed seven monophyletic and five paraphyletic. The populations identified were related to geographic location, of which three populations (EBV-p1/Asia/GC, EBV-p2/Asia II/Tumors and EBV-p4/China/NPC) were related to tumor development. Therefore, we proposed a new consistent and non-simplistic EBV classification, beneficial in minimizing the recombination signal in the phylogeny reconstruction, investigating geography relationship and even infer associations to human diseases. These EBV classifications could also be useful in developing diagnostic applications or defining which strains need epidemiological surveillance.


Subject(s)
Epstein-Barr Virus Infections/virology , Genomics/methods , Herpesvirus 4, Human/classification , Recombination, Genetic , Asia , Bayes Theorem , China , Epidemiological Monitoring , Genetic Variation , Genome, Viral , Herpesvirus 4, Human/genetics , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Phylogeography , Whole Genome Sequencing
12.
Sci Rep ; 9(1): 7488, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31097761

ABSTRACT

Antarctic have been suggested as an attractive source for antibiotics discovery and members of Streptomyces genus have historically been studied as natural producers of antimicrobial metabolites. Nonetheless, our knowledge on antibiotic-producing Streptomyces from Antarctic is very limited. In this study, the antimicrobial activity of organic extracts from Antarctic Streptomyces strains was evaluated by disk diffusion assays and minimum inhibitory concentration. The strain Streptomyces sp. So13.3 showed the greatest antibiotic activity (MIC = 15.6 µg/mL) against Gram-positive bacteria and growth reduction of Gram‒negative pathogens. The bioactive fraction in the crude extract was revealed by TLC‒bioautography at Rf = 0.78 with molecular weight between 148 and 624 m/z detected by LC-ESI-MS/MS. The strain So13.3 was taxonomically affiliated as Streptomyces fildesensis. Whole genome sequencing and analysis suggested a 9.47 Mb genome size with 42 predicted biosynthetic gene clusters (BGCs) and 56 putative clusters representing a 22% of total genome content. Interestingly, a large number of them (11 of 42 BGCs and 40 of 56 putative BGCs), did not show similarities with other known BGCs. Our results highlight the potential of the Antarctic Streptomyces strains as a promising source of novel antimicrobials, particularly the strain Streptomyces fildesensis So13.3, which first draft genome is reported in this work.


Subject(s)
Anti-Infective Agents/metabolism , Genome, Bacterial , Streptomyces/genetics , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Gram-Negative Bacteria/drug effects , Streptomyces/metabolism , Whole Genome Sequencing
13.
Biol Res ; 52(1): 13, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30894224

ABSTRACT

BACKGROUND: Ovarian cancer is a significant cancer-related cause of death in women worldwide. The most used chemotherapeutic regimen is based on carboplatin (CBDCA). However, CBDCA resistance is the main obstacle to a better prognosis. An in vitro drug-resistant cell model would help in the understanding of molecular mechanisms underlying this drug-resistance phenomenon. The aim of this study was to characterize cellular and molecular changes of induced CBDCA-resistant ovarian cancer cell line A2780. METHODS: The cell selection strategy used in this study was a dose-per-pulse method using a concentration of 100 µM for 2 h. Once 20 cycles of exposure to the drug were completed, the cell cultures showed a resistant phenotype. Then, the ovarian cancer cell line A2780 was grown with 100 µM of CBDCA (CBDCA-resistant cells) or without CBDCA (parental cells). After, a drug sensitivity assay, morphological analyses, cell death assays and a RNA-seq analysis were performed in CBDCA-resistant A2780 cells. RESULTS: Microscopy on both parental and CBDCA-resistant A2780 cells showed similar characteristics in morphology and F-actin distribution within cells. In cell-death assays, parental A2780 cells showed a significant increase in phosphatidylserine translocation and caspase-3/7 cleavage compared to CBDCA-resistant A2780 cells (P < 0.05 and P < 0.005, respectively). Cell viability in parental A2780 cells was significantly decreased compared to CBDCA-resistant A2780 cells (P < 0.0005). The RNA-seq analysis showed 156 differentially expressed genes (DEGs) associated mainly to molecular functions. CONCLUSION: CBDCA-resistant A2780 ovarian cancer cells is a reliable model of CBDCA resistance that shows several DEGs involved in molecular functions such as transmembrane activity, protein binding to cell surface receptor and catalytic activity. Also, we found that the Wnt/ß-catenin and integrin signaling pathway are the main metabolic pathway dysregulated in CBDCA-resistant A2780 cells.


Subject(s)
Antineoplastic Agents/pharmacology , Carboplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Ovarian Neoplasms/genetics , Transcriptome/drug effects , Cell Death/drug effects , Cell Death/genetics , Cell Line, Tumor , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Phenotype , Sequence Analysis, RNA , Signal Transduction , Transcriptome/genetics
14.
Biol. Res ; 52: 13, 2019. graf
Article in English | LILACS | ID: biblio-1011415

ABSTRACT

BACKGROUND: Ovarian cancer is a significant cancer-related cause of death in women worldwide. The most used chemotherapeutic regimen is based on carboplatin (CBDCA). However, CBDCA resistance is the main obstacle to a better prognosis. An in vitro drug-resistant cell model would help in the understanding of molecular mechanisms underlying this drug-resistance phenomenon. The aim of this study was to characterize cellular and molecular changes of induced CBDCA-resistant ovarian cancer cell line A2780. METHODS: The cell selection strategy used in this study was a dose-per-pulse method using a concentration of 100 µM for 2 h. Once 20 cycles of exposure to the drug were completed, the cell cultures showed a resistant phenotype. Then, the ovarian cancer cell line A2780 was grown with 100 µM of CBDCA (CBDCA-resistant cells) or without CBDCA (parental cells). After, a drug sensitivity assay, morphological analyses, cell death assays and a RNA-seq analysis were performed in CBDCA-resistant A2780 cells. RESULTS: Microscopy on both parental and CBDCA-resistant A2780 cells showed similar characteristics in morphology and F-actin distribution within cells. In cell-death assays, parental A2780 cells showed a significant increase in phosphatidylserine translocation and caspase-3/7 cleavage compared to CBDCA-resistant A2780 cells (P < 0.05 and P < 0.005, respectively). Cell viability in parental A2780 cells was significantly decreased compared to CBDCA-resistant A2780 cells (P < 0.0005). The RNA-seq analysis showed 156 differentially expressed genes (DEGs) associated mainly to molecular functions. CONCLUSION: CBDCA-resistant A2780 ovarian cancer cells is a reliable model of CBDCA resistance that shows several DEGs involved in molecular functions such as transmembrane activity, protein binding to cell surface receptor and catalytic activity. Also, we found that the Wnt/3-catenin and integrin signaling pathway are the main metabolic pathway dysregulated in CBDCA-resistant A2780 cells.


Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Carboplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Transcriptome/drug effects , Antineoplastic Agents/pharmacology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Phenotype , Signal Transduction , Cell Death/drug effects , Cell Death/genetics , Sequence Analysis, RNA , Cell Line, Tumor , Transcriptome/genetics
15.
Emerg Infect Dis ; 24(5): 852-859, 2018 05.
Article in English | MEDLINE | ID: mdl-29664388

ABSTRACT

Galicia in northwestern Spain has been considered a hotspot for Vibrio parahaemolyticus infections. Infections abruptly emerged in 1998 and, over the next 15 years, were associated with large outbreaks caused by strains belonging to a single clone. We report a recent transition in the epidemiologic pattern in which cases throughout the region have been linked to different and unrelated strains. Global genome-wide phylogenetic analysis revealed that most of the pathogenic strains isolated from infections were associated with globally diverse isolates, indicating frequent episodic introductions from disparate and remote sources. Moreover, we identified that the 2 major switches in the epidemic dynamics of V. parahaemolyticus in the regions, the emergence of cases and an epidemiologic shift in 2015-2016, were associated with the rise of sea surface temperature in coastal areas of Galicia. This association may represent a fundamental contributing factor in the emergence of illness linked to these introduced pathogenic strains.


Subject(s)
Communicable Diseases, Emerging/microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Vibrio Infections/epidemiology , Vibrio Infections/microbiology , Vibrio parahaemolyticus/isolation & purification , DNA, Bacterial/genetics , Epidemics , Genome, Bacterial , Humans , Phylogeny , Spain/epidemiology , Vibrio parahaemolyticus/genetics
16.
mBio ; 8(6)2017 11 14.
Article in English | MEDLINE | ID: mdl-29138301

ABSTRACT

Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3) was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW) lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming.IMPORTANCEVibrio parahaemolyticus and Vibrio cholerae represent the only two instances of pandemic expansions of human pathogens originating in the marine environment. However, while the current pandemic of V. cholerae emerged more than 50 years ago, the global expansion of V. parahaemolyticus is a recent phenomenon. These modern expansions provide an exceptional opportunity to study the evolutionary process of these pathogens at first hand and gain an understanding of the mechanisms shaping the epidemic dynamics of these diseases, in particular, the emergence, dispersal, and successful introduction in new regions facilitating global spreading of infections. In this study, we used genomic analysis to examine the evolutionary divergence that has occurred over the course of the most recent transcontinental expansion of a pathogenic Vibrio, the spreading of the V. parahaemolyticus sequence type 36 clone from the region where it is endemic on the Pacific coast of North America to the east coast of the United States and finally to the west coast of Europe.


Subject(s)
Evolution, Molecular , Genetic Variation , Pandemics , Vibrio Infections/epidemiology , Vibrio Infections/microbiology , Vibrio parahaemolyticus/classification , Vibrio parahaemolyticus/genetics , Europe/epidemiology , Humans , Molecular Epidemiology , Recombination, Genetic , United States/epidemiology , Vibrio parahaemolyticus/isolation & purification
17.
Res Microbiol ; 168(5): 482-492, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28235561

ABSTRACT

Friendly environmental hydrometallurgy at low temperatures is principally promoted by Acidithiobacillus ferrivorans. Until recently, the synergy between cold tolerance and the molecular mechanism of ferrous iron (Fe2+) oxidation was unknown. In the present paper, we conducted a physiological and comparative genomics analysis of the new strain A. ferrivorans PQ33 to elucidate the oxidation mechanism at low temperatures, with emphasis placed on trehalose and the Rus operon. PQ33 exhibited a doubling time of 66.6 h in Fe2+ at pH 1.6 and 63.6 h in CuS at 5 °C. Genomic island (GI) identification and comparative genome analysis were performed with four available genomes of Acidithiobacillus sp. The genome comprised 3,298,172 bp and 56.55% GC content. In contrast to ATCC Acidithiobacillus ferrooxidans strains, the genome of A. ferrivorans PQ33 harbors one GI, which contains a RusB gene. Moreover, five genes of peptidyl-prolyl cis-trans isomerase (PPIases) were observed. Furthermore, comparative analysis of the trehalose operon suggested the presence of a horizontal transfer event. In addition, comparison of rusticyanin proteins revealed that RusB has better intrinsic flexibility than RusA. This comparison suggests psychrotolerant fitness and supports the genetic canalization of A. ferrivorans PQ33 for oxidation at low temperature.


Subject(s)
Acidithiobacillus/genetics , Acidithiobacillus/physiology , Cold Temperature , Ferrous Compounds/metabolism , Genetic Fitness , Genome, Bacterial , Acidithiobacillus/enzymology , Base Composition , DNA, Bacterial/genetics , Gene Transfer, Horizontal , Genomic Islands , Genomics , Operon , Oxidation-Reduction , Peptidylprolyl Isomerase/genetics , Phylogeny , Trehalose/metabolism
18.
Bioinformation ; 8(15): 695-704, 2012.
Article in English | MEDLINE | ID: mdl-23055613

ABSTRACT

Molecular studies of enzymes involved in sulfite oxidation in Acidithiobacillus ferrooxidans have not yet been developed, especially in the ATP sulfurylase (ATPS) of these acidophilus tiobacilli that have importance in biomining. This enzyme synthesizes ATP and sulfate from adenosine phosphosulfate (APS) and pyrophosphate (PPi), final stage of the sulfite oxidation by these organisms in order to obtain energy. The atpS gene (1674 bp) encoding the ATPS from Acidithiobacillus ferrooxidans ATCC 23270 was amplified using PCR, cloned in the pET101-TOPO plasmid, sequenced and expressed in Escherichia coli obtaining a 63.5 kDa ATPS recombinant protein according to SDS-PAGE analysis. The bioinformatics and phylogenetic analyses determined that the ATPS from A. ferrooxidans presents ATP sulfurylase (ATS) and APS kinase (ASK) domains similar to ATPS of Aquifex aeolicus, probably of a more ancestral origin. Enzyme activity towards ATP formation was determined by quantification of ATP formed from E. coli cell extracts, using a bioluminescence assay based on light emission by the luciferase enzyme. Our results demonstrate that the recombinant ATP sulfurylase from A. ferrooxidans presents an enzymatic activity for the formation of ATP and sulfate, and possibly is a bifunctional enzyme due to its high homology to the ASK domain from A. aeolicus and true kinases.

19.
Rev. peru. biol. (Impr.) ; 15(1): 91-95, jul. 2008. ilus, graf
Article in Spanish | LIPECS | ID: biblio-1111215

ABSTRACT

Las aguas ácidas de minas tienen una considerable diversidad de microorganismos eucariontes, entre ellos hongos y protistas; en particular, poco se conoce sobre la diversidad de levaduras en drenajes ácidos de minas peruanas. En el presente estudio se aisló y caracterizó la levadura 1MA9, mediante la amplificación y secuenciación del LSU D1/D2 del gen rRNA 26S. La cepa 1MA9 se identificó molecularmente como Pichia guillermondi, ésta presentó una resistencia alta a Mn2+ (>400 mM), intermedia a iones Zn2+ y Co2+ (400—600 mM), pero fue sensible a iones Cu2+. Este trabajo representa el primer reporte de levaduras en ambientes acuáticos ácidos proveniente de minas peruanas.


Microbe eukaryotes like fungi and protista are common in the drainage of mines. Few information is known on microbial diversity of acid drainages of Peruvian mines. In this work we isolated and characterized the 1M9 yeast. We utilized LSU D1/D2 of the 26S rRNA gene sequence phylogenetic analyses to characterize the diversity the yeast 1MA9 isolated. The strain 1MA9 was closely related to the Pichia guilliermondii. The yeast showed high resistance to Mn2+ (>400 mM), intermediate to ions Zn2+ and Co2+ (400—600 mM), but sensible to ions Cu2+. This work provides the first data on yeasts from an aquatic acid environment of Peruvian mines.


Subject(s)
Yeasts , Pichia , Mining Acid Water
SELECTION OF CITATIONS
SEARCH DETAIL
...