Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Jundishapur J Microbiol ; 7(5): e9963, 2014 May.
Article in English | MEDLINE | ID: mdl-25147723

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis genotyping can effectively improve tuberculosis (TB) control programs by controlling disease transmission. Pulsed field gel electrophoresis (PFGE) is a particularly powerful tool for determination of clonal identity of bacteria providing information for understanding and controlling the spread of disease. OBJECTIVES: The aim of present study was to investigate the genetic diversity of M. tuberculosis strains in Khuzestan province by the PFGE technique. PATIENTS AND METHODS: In total, 80 M. tuberculosis positive cultures were obtained from tuberculosis patients. PFGE was performed on 60 PCR-confirmed isolates by using DraI and XbaI restriction enzymes according to standard protocols. Plugs containing digested DNA were then loaded on agarose gels and run using contour-clamped homogenous electric fields. RESULTS: Fifty distinct DNA banding patterns were obtained by digestion of DNA with DraI and 38 DNA banding patterns by digestion with XbaI restriction enzymes. The patterns comprised of 17 different clusters in which cluster I was the major one, containing six strains. Three clusters contained three strains each and the 13 remaining clusters comprised of two strains each. Digestion with DraI yielded 15-20 DNA fragments with 50-485 kb size, while digestion by XbaI produced DNA fragments with a size smaller than 50-242 kb. CONCLUSIONS: Despite the ability of PFGE for study of genetic diversity of many mycobacterial species and it being considered as a robust and useful tool, in this study we only found a 15% epidemiological relationship amongst the isolates. Thus, for higher discrimination of genotypic clusters among M. tuberculosis clinical isolates, the application of more sophisticated complementary techniques is required.

2.
Iran J Microbiol ; 6(2): 74-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-25705355

ABSTRACT

BACKGROUND AND OBJECTIVE: Urinary tract infections (UTIs) are the most common infections in renal transplant recipients and are considered a potential cause of bacteremia, sepsis, and affects graft outcomes. The aim of the present study was to determine the incidence of UTI among renal transplant recipients and investigation of antimicrobial susceptibility pattern of causative agents. MATERIALS AND METHODS: In total, 1165 patients from March 2009 to December 2012, in transplant center of Golestan Hospital, Ahvaz, Iran, were investigated. Qualitative urine cultures were performed for all cases, causative microorganisms were identified and colony count was performed according to the standard protocol. Antibiotic susceptibility testing was then performed to determine the susceptibility pattern of recovered bacteria from confirmed UTIs. RESULTS: UTI was diagnosed in 391 patients(33.56%). Gram-negative bacteria were the most prevalent isolated microorganisms with E. coli (43.53%), followed by Enterobacter spp. (35.37%) as the major organisms. Among Gram positives, Coagulase-negative Staphylococci was isolated from 6.8% of cases. The rate of resistance to all tested antibiotics was highest in Enterobacter spp., however the most common resistance were seen against cefixime, cephalotin, and cotrimoxazole in all tested gram negatives. CONCLUSION: the rate of UTIs among renal transplant recipients was noticeable in this study with high antibiotic resistance. Multi-resistant bacterial infections are potentially life-threatening emerging problem in renal transplantation. Prophylactic measures must be applied to patients at greater risk.

SELECTION OF CITATIONS
SEARCH DETAIL
...