Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 15989, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163449

ABSTRACT

Water microbial purification is one of the hottest topics that threats human morbidity and mortality. It is indispensable to purify water using antimicrobial agents combined with several technologies and systems. Herein, we introduce a class of nanosized metal organic framework; Zeolitic imidazolate framework (ZIF-67) cages encapsulated with polyoxometalates synthesized via facile one-step co-precipitation method. We employed two types of polyoxometalates bioactive agents; phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) that act as novel antibacterial purification agents. Several characterization techniques were utilized to investigate the morphological, structural, chemical, and physical properties such as FESEM, EDS, FTIR, XRD, and N2 adsorption/desorption isotherms techniques. The antibacterial assessment was evaluated using colony forming unit (CFU) against both Escherichia coli and Staphylococcus aureus as models of Gram-negative and Gram-positive bacteria, respectively. The PTA@ZIF-67 showed higher microbial inhibition against both Gram-positive and Gram-negative bacteria by 98.8% and 84.6%, respectively. Furthermore, computational modeling using density functional theory was conducted to evaluate the antibacterial efficacy of PTA when compared to PMA. The computational and experimental findings demonstrate that the fabricated POM@ZIF-67 materials exhibited outstanding bactericidal effect against both Gram-negative and Gram-positive bacteria and effectively purify contaminated water.


Subject(s)
Anti-Infective Agents , Metal-Organic Frameworks , Anions , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Phosphotungstic Acid/pharmacology , Polyelectrolytes , Water/chemistry
2.
ACS Biomater Sci Eng ; 6(12): 6490-6509, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33320628

ABSTRACT

Spinal cord injury (SCI) is a devastating health condition that may lead to permanent disabilities and death. Understanding the pathophysiological perspectives of traumatic SCI is essential to define mechanisms that can help in designing recovery strategies. Since central nervous system tissues are notorious for their deficient ability to heal, efforts have been made to identify solutions to aid in restoration of the spinal cord tissues and thus its function. The two main approaches proposed to address this issue are neuroprotection and neuro-regeneration. Neuroprotection involves administering drugs to restore the injured microenvironment to normal after SCI. As for the neuro-regeneration approach, it focuses on axonal sprouting for functional recovery of the injured neural tissues and damaged axons. Despite the progress made in the field, neural regeneration treatment after SCI is still unsatisfactory owing to the disorganized way of axonal growth and extension. Nanomedicine and tissue engineering are considered promising therapeutic approaches that enhance axonal growth and directionality through implanting or injecting of the biomaterial scaffolds. One of these recent approaches is nanofibrous scaffolds that are used to provide physical support to maintain directional axonal growth in the lesion site. Furthermore, these preferable tissue-engineered substrates can afford axonal regeneration by mimicking the extracellular matrix of the neural tissues in terms of biological, chemical, and architectural characteristics. In this review, we discuss the regenerative approach using nanofibrous scaffolds with a focus on their fabrication methods and their properties that define their functionality performed to heal the neural tissue efficiently.


Subject(s)
Spinal Cord Injuries , Biocompatible Materials , Humans , Nerve Regeneration , Spinal Cord Injuries/therapy , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...