Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Med Imaging Graph ; 108: 102269, 2023 09.
Article in English | MEDLINE | ID: mdl-37487362

ABSTRACT

Optical Coherence Tomography (OCT) is an emerging technology that provides three-dimensional images of the microanatomy of biological tissue in-vivo and at micrometer-scale resolution. OCT imaging has been widely used to diagnose and manage various medical diseases, such as macular degeneration, glaucoma, and coronary artery disease. Despite its wide range of applications, the segmentation of OCT images remains difficult due to the complexity of tissue structures and the presence of artifacts. In recent years, different approaches have been used for OCT image segmentation, such as intensity-based, region-based, and deep learning-based methods. This paper reviews the major advances in state-of-the-art OCT image segmentation techniques. It provides an overview of the advantages and limitations of each method and presents the most relevant research works related to OCT image segmentation. It also provides an overview of existing datasets and discusses potential clinical applications. Additionally, this review gives an in-depth analysis of machine learning and deep learning approaches for OCT image segmentation. It outlines challenges and opportunities for further research in this field.


Subject(s)
Deep Learning , Glaucoma , Macular Degeneration , Humans , Tomography, Optical Coherence/methods , Machine Learning , Glaucoma/diagnostic imaging
2.
Diagnostics (Basel) ; 13(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37296799

ABSTRACT

Medical image analysis plays an important role in clinical diagnosis. In this paper, we examine the recent Segment Anything Model (SAM) on medical images, and report both quantitative and qualitative zero-shot segmentation results on nine medical image segmentation benchmarks, covering various imaging modalities, such as optical coherence tomography (OCT), magnetic resonance imaging (MRI), and computed tomography (CT), as well as different applications including dermatology, ophthalmology, and radiology. Those benchmarks are representative and commonly used in model development. Our experimental results indicate that while SAM presents remarkable segmentation performance on images from the general domain, its zero-shot segmentation ability remains restricted for out-of-distribution images, e.g., medical images. In addition, SAM exhibits inconsistent zero-shot segmentation performance across different unseen medical domains. For certain structured targets, e.g., blood vessels, the zero-shot segmentation of SAM completely failed. In contrast, a simple fine-tuning of it with a small amount of data could lead to remarkable improvement of the segmentation quality, showing the great potential and feasibility of using fine-tuned SAM to achieve accurate medical image segmentation for a precision diagnostics. Our study indicates the versatility of generalist vision foundation models on medical imaging, and their great potential to achieve desired performance through fine-turning and eventually address the challenges associated with accessing large and diverse medical datasets in support of clinical diagnostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...