Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(11): 6699-6715, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35234757

ABSTRACT

In a wide spectrum of neurodegenerative diseases, self-assembly of pathogenic proteins to cytotoxic intermediates is accelerated by the presence of metal ions such as Cu2+. Only low concentrations of these early transient oligomeric intermediates are present in a mixture of species during fibril formation, and hence information on the extent of structuring of these oligomers is still largely unknown. Here, we investigate dimers as the first intermediates in the Cu2+-driven aggregation of a cyclic D,L-α-peptide architecture. The unique structural and functional properties of this model system recapitulate the self-assembling properties of amyloidogenic proteins including ß-sheet conformation and cross-interaction with pathogenic amyloids. We show that a histidine-rich cyclic D,L-α-octapeptide binds Cu2+ with high affinity and selectivity to generate amyloid-like cross-ß-sheet structures. By taking advantage of backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic amounts of Cu2+ promote aggregation of the peptide to fibrillar structures, higher concentrations dose-dependently reduce fibrillization and lead to formation of spherical particles, showing self-assembly to different polymorphs. For the initial self-assembly step to the dimers, we found that Cu2+ is coordinated on average by two histidines, similar to self-assembled peptides, indicating that a similar binding interface is perpetuated during Cu2+-driven oligomerization. The dimer itself is found in heterogeneous conformations that undergo dynamic exchange, leading to the formation of different polymorphs at the initial stage of the aggregation process.


Subject(s)
Amyloid , Neurodegenerative Diseases , Peptides, Cyclic , Amyloid/biosynthesis , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , Humans , Neurodegenerative Diseases/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Protein Conformation, beta-Strand
2.
FEBS J ; 285(11): 1988-2003, 2018 06.
Article in English | MEDLINE | ID: mdl-29619777

ABSTRACT

The inflammatory chemokine CCL5, which binds the chemokine receptor CCR5 in a two-step mechanism so as to activate signaling pathways in hematopoetic cells, plays an important role in immune surveillance, inflammation, and development as well as in several immune system pathologies. The recently published crystal structure of CCR5 bound to a high-affinity variant of CCL5 lacks the N-terminal segment of the receptor that is post-translationally sulfated and is known to be important for high-affinity binding. Here, we report the NMR solution structure of monomeric CCL5 bound to a synthetic doubly sulfated peptide corresponding to the missing first 27 residues of CCR5. Our structures show that two sulfated tyrosine residues, sY10 and sY14, as well as the unsulfated Y15 form a network of strong interactions with a groove on a surface of CCL5 that is formed from evolutionarily conserved basic and hydrophobic amino acids. We then use our NMR structures, in combination with available crystal data, to create an atomic model of full-length wild-type CCR5:CCL5. Our findings reveal the structural determinants involved in the recognition of CCL5 by the CCR5 N terminus. These findings, together with existing structural data, provide a complete structural framework with which to understand the specificity of receptor:chemokine interactions. DATABASE: Structural data are available in the PDB under the accession number 6FGP.


Subject(s)
Chemokine CCL5/chemistry , Protein Conformation , Receptors, CCR5/chemistry , Amino Acid Sequence/genetics , Binding Sites , Chemokine CCL5/genetics , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Nuclear Magnetic Resonance, Biomolecular , Protein Binding/genetics , Receptors, CCR5/genetics
3.
FEBS J ; 284(4): 586-601, 2017 02.
Article in English | MEDLINE | ID: mdl-28052516

ABSTRACT

NMR is a powerful tool for studying structural details of protein/peptide complexes exhibiting weak to medium binding (KD > 10 µm). However, it has been assumed that intermolecular nuclear Overhauser effect (NOE) interactions are difficult to observe in such complexes. We demonstrate that intermolecular NOEs can be revealed by combining the 13 C-edited/13 C-filtered experiment with the transferred NOE effect (TRNOE). Due to the TRNOE phenomenon, intermolecular NOE cross peaks are characterized by both the chemical shifts (CSs) of the protein protons and the average CSs of the peptide protons, which are dominated by the CSs of the protons of the free peptide. Previously, the TRNOE phenomenon was used almost exclusively to investigate the conformation of small ligands bound to large biomolecules. Here, we demonstrate that TRNOE can be extended to enable the study of intermolecular interactions in small- and medium-sized protein complexes. We used the 13 C-edited/13 C-filtered TRNOE experiment to study the interactions of the chemokine regulated upon activation, normal T cell, expressed and secreted (RANTES) with a 27-residue peptide, containing two sulfotyrosine residues, representing the N-terminal segment of the CCR5 receptor ((Nt-CCR5(1-27). The TRNOE phenomenon led to more than doubling of the signal-to-noise ratios (SNRs) for the intermolecular NOEs observed in the 13 C-edited/13 C-filtered experiment for the 11.5-kDa monomeric RANTES/Nt-CCR5(1-27) complex. An even better improvement in the SNR was achieved with dimeric Nt-CCR5(1-27)/RANTES (23 kDa), especially in comparison with the spectra measured with a 1 : 1 protein to peptide ratio. In principle, the isotope-edited/isotope-filtered TRNOE spectrum can discern all intermolecular interactions involving nonexchangeable protons in the complex.


Subject(s)
Chemokine CCL5/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Receptors, CCR5/chemistry , Amino Acid Sequence , Binding Sites , Carbon Isotopes , Chemokine CCL5/genetics , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Kinetics , Molecular Weight , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Receptors, CCR5/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Staining and Labeling/methods
4.
FEBS J ; 282(10): 1906-1921, 2015 May.
Article in English | MEDLINE | ID: mdl-25703038

ABSTRACT

UNLABELLED: C-C chemokine receptor 5 (CCR5) serves as a co-receptor for HIV-1. The CCR5 N-terminal segment, the second extracellular loop (ECL2) and the transmembrane helices have been implicated in binding the envelope glycoprotein gp120. Peptides corresponding to the sequence of the putative ECL2 as well as peptides containing extracellular loops 1 and 3 (ECL1 and ECL3) were found to inhibit HIV-1 infection. The aromatic residues in the C-terminal half of an ECL2 peptide were shown to interact with gp120. In the present study, we found that, in aqueous buffer, the segment Q188-Q194 in an elongated ECL2 peptide (R168-K197) forms an amphiphilic helix, which corresponds to the beginning of the fifth transmembrane helix in the crystal structure of CCR5. Two-dimensional saturation transfer difference NMR spectroscopy and dynamic filtering studies revealed involvement of Y187, F189, W190 and F193 of the helical segment in the interaction with gp120. The crystal structure of CCR5 shows that the aromatic side chains of F189, W190 and F193 point away from the binding pocket and interact with the membrane or with an adjacent CCR5 molecule, and therefore could not interact with gp120 in the intact CCR5 receptor. We conclude that these three aromatic residues of ECL2 peptides interact with gp120 through hydrophobic interactions that are not representative of the interactions of the intact CCR5 receptor. The HIV-1 inhibition by ECL2 peptides, as well as by ECL1 and ECL3 peptides and peptides corresponding to ECL2 of CXCR4, which serves as an alternative HIV-1 co-receptor, suggests that there is a hydrophobic surface in the envelope spike that could be a target for HIV-1 entry inhibitors. DATABASE: The structures and NMR data of ECL2S (Q186-T195) were deposited under Protein Data Bank ID 2mzx and BioMagResBank ID 25505.


Subject(s)
HIV Envelope Protein gp120/metabolism , HIV-1/metabolism , Peptides/chemistry , Peptides/metabolism , Receptors, CCR5/chemistry , Receptors, CCR5/metabolism , Animals , Cattle , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Protein Binding , Protein Structure, Secondary , Serum Albumin, Bovine/metabolism
5.
FEBS J ; 281(13): 3019-31, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24819826

ABSTRACT

The envelope spike of HIV-1, which consists of three external gp120 and three transmembrane gp41 glycoproteins, recognizes its target cells by successively binding to its primary CD4 receptor and a coreceptor molecule. Until recently, atomic-resolution structures were available primarily for monomeric HIV-1 gp120, in which the V1, V2 and V3 variable loops were omitted (gp120core ), in complex with soluble CD4 (sCD4). Differences between the structure of HIV gp120core in complex with sCD4 and the structure of unliganded simian immunodeficiency virus gp120core led to the hypothesis that gp120 undergoes a major conformational change upon sCD4 binding. To investigate the conformational flexibility of gp120, we generated two forms of mutated gp120 amenable for NMR studies: one with V1, V2 and V3 omitted ((mut) gp120core ) and the other containing the V3 region [(mut) gp120core (+V3)]. The TROSY-(1)H-(15)N-HSQC spectra of [(2)H, (13)C, (15)N]Arg-labeled and [(2)H, (13)C, (15)N]Ile-labeled unliganded (mut) gp120core showed many fewer crosspeaks than the expected number, and also many fewer crosspeaks in comparison with the labeled (mut) gp120core bound to the CD4-mimic peptide, CD4M33. This finding suggests that in the unliganded form, (mut) gp120core shows considerable flexibility and motions on the millisecond time scale. In contrast, most of the expected crosspeaks were observed for the unliganded (mut) gp120core (+V3), and only a few changes in chemical shift were observed upon CD4M33 binding. These results indicate that (mut) gp120core (+V3) does not show any significant conformational flexibility in its unliganded form and does not undergo any significant conformational change upon CD4M33 binding, underlining the importance of V3 in stabilizing the gp120core conformation.


Subject(s)
HIV Envelope Protein gp120/chemistry , HIV-1/chemistry , Amino Acid Substitution , CD4 Antigens/chemistry , HEK293 Cells , HIV Envelope Protein gp120/genetics , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Protein Binding , Protein Stability , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...