Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Prog ; 104(4): 368504211059973, 2021 10.
Article in English | MEDLINE | ID: mdl-34870493

ABSTRACT

Caylusea hexagyna and Ochradenus baccatus are two species in the Resedaceae family. In this study, we analysed the complete plastid genomes of these two species using high-throughput sequencing technology and compared their genomic data. The length of the plastid genome of C. hexagyna was 154,390 bp while that of O. baccatus was 153,380 bp. The lengths of the inverted repeats (IR) regions were 26,526 bp and 26,558 bp, those of the large single copy (LSC) regions were 83,870 bp and 83,023 bp; and those of the small single copy (SSC) regions were 17,468 bp and 17,241 bp in C. hexagyna and O. baccatus, respectively. Both genomes consisted of 113 genes: 79 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Repeat analysis showed that the plastid genome included all types of repeats, with more frequent occurrences of palindromic sequences. Comparative studies of SSR markers showed that there were 256 markers in C. hexagyna and 255 in O. baccatus; the majority of the SSRs in these plastid genomes were mononucleotide repeats (A/T). All the clusters in the phylogenetic tree had high support. This study reported the first complete plastid genomes of the genera Caylusea and Ochradenus and the first for the Resedaceae family.


Subject(s)
Genome, Chloroplast , Resedaceae , Genomics , High-Throughput Nucleotide Sequencing , Phylogeny
2.
Plants (Basel) ; 10(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204211

ABSTRACT

This study presents for the first time the complete chloroplast genomes of four medicinal species in the Capparaceae family belonging to two different genera, Cadaba and Maerua (i.e., C. farinosa, C. glandulosa, M. crassifolia and M. oblongifolia), to investigate their evolutionary process and to infer their phylogenetic positions. The four species are considered important medicinal plants, and are used in the treatment of many diseases. In the genus Cadaba, the chloroplast genome ranges from 156,481 bp to 156,560 bp, while that of Maerua ranges from 155,685 bp to 155,436 bp. The chloroplast genome of C. farinosa, M. crassifolia and M. oblongifolia contains 138 genes, while that of C. glandulosa contains 137 genes, comprising 81 protein-coding genes, 31 tRNA genes and 4 rRNA genes. Out of the total genes, 116-117 are unique, while the remaining 19 are replicated in inverted repeat regions. The psbG gene, which encodes for subunit K of NADH dehydrogenase, is absent in C. glandulosa. A total of 249 microsatellites were found in the chloroplast genome of C. farinosa, 251 in C. glandulosa, 227 in M. crassifolia and 233 in M. oblongifolia, the majority of which are mononucleotides A/T found in the intergenic spacer. Comparative analysis revealed variable hotspot regions (atpF, rpoC2, rps19 and ycf1), which can be used as molecular markers for species authentication and as regions for inferring phylogenetic relationships among them, as well as for evolutionary studies. The monophyly of Capparaceae and other families under Brassicales, as well as the phylogenetic positions of the studied species, are highly supported by all the relationships in the phylogenetic tree. The cp genomes reported in this study will provide resources for studying the genetic diversity of Capparaceae, as well as resolving phylogenetic relationships within the family.

3.
Saudi J Biol Sci ; 28(4): 2476-2490, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33911961

ABSTRACT

This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.

4.
Mitochondrial DNA B Resour ; 6(2): 601-603, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33681464

ABSTRACT

Capparis spinosa L. and Capparis decidua Forsk. belong to the Capparaceae family. The two species are important medicinal plants uses in treatment of various ailments. In this study, we present the complete chloroplast genomes of the two species. The complete plastome genomes of the two species have a circular structure and a length of 157,728 bp in Capparis spinosa and 157,573 bp in Capparis decidua and GC content of 35.91, 35.96% respectively. The chloroplast genome of C. spinosa and C. decidua is divided into four regions: LSC of 86,732 and 85,950 bp respectively, SSC from 18,322 to 18,621 bp and a pair of inverted repeats 26,337 and 26,501 bp each. Both of the chloroplast genomes contained 115 different genes, including 80 protein coding genes, 31 tRNA genes and four rRNA genes. A phylogenetic analysis demonstrated that C. spinosa is sister to Capparis urophylla. The two species are sister to C. decidua.

5.
Mitochondrial DNA B Resour ; 5(1): 566-567, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-33366649

ABSTRACT

Pergularia tomentosa is a medicinal plant mainly found in Saudi Arabia, northern and southern Africa. In this study, we present the sequence of the complete chloroplast (cp) genome of P. tomentosa in order to evaluate the evolutionary relationship in the subfamily Asclepiadoideae. The cp is 164,213 bp in lengh with 37.3% GC content, inverted repeat (IR) regions of 21,411 bp each, a large single-copy (LSC) region of 80,102 bp, and a small single-copy (SSC) region of 17,022 bp. It constitutes of 89 protien-coding genes, 44 tRNA genes, and 8 rRNA genes. The phylogenetic relationship showed close relationship between P. tomentosa and other Asclepiadeae members with Marsedineae subtribe. The study will help for future research on evolutionary studies of Apoceanaceae.

7.
BMC Genomics ; 21(1): 393, 2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32532210

ABSTRACT

BACKGROUND: The plastome of medicinal and endangered species in Kingdom of Saudi Arabia, Barleria prionitis was sequenced. The plastome was compared with that of seven Acanthoideae species in order to describe the plastome, spot the microsatellite, assess the dissimilarities within the sampled plastomes and to infer their phylogenetic relationships. RESULTS: The plastome of B. prionitis was 152,217 bp in length with Guanine-Cytosine and Adenine-Thymine content of 38.3 and 61.7% respectively. It is circular and quadripartite in structure and constitute of a large single copy (LSC, 83, 772 bp), small single copy (SSC, 17, 803 bp) and a pair of inverted repeat (IRa and IRb 25, 321 bp each). 131 genes were identified in the plastome out of which 113 are unique and 18 were repeated in IR region. The genome consists of 4 rRNA, 30 tRNA and 80 protein-coding genes. The analysis of long repeat showed all types of repeats were present in the plastome and palindromic has the highest frequency. A total number of 98 SSR were also identified of which mostly were mononucleotide Adenine-Thymine and are located at the non coding regions. Comparative genomic analysis among the plastomes revealed that the pair of the inverted repeat is more conserved than the single copy region. In addition high variation is observed in the intergenic spacer region than the coding region. The genes, ycf1and ndhF and are located at the border junction of the small single copy region and IRb region of all the plastome. The analysis of sequence divergence in the protein coding genes indicates that the following genes undergo positive selection (atpF, petD, psbZ, rpl20, petB, rpl16, rps16, rpoC, rps7, rpl32 and ycf3). Phylogenetic analysis indicated sister relationship between Ruellieae and Justcieae. In addition, Barleria, Justicia and Ruellia are paraphyletic, suggesting that Justiceae, Ruellieae, Andrographideae and Barlerieae should be treated as tribes. CONCLUSIONS: This study sequenced and assembled the first plastome of the taxon Barleria and reported the basics resources for evolutionary studies of B. prionitis and tools for phylogenetic relationship studies within the core Acanthaceae.


Subject(s)
Acanthaceae/classification , Genome, Chloroplast , Genomics/classification , Acanthaceae/genetics , Microsatellite Repeats , Open Reading Frames , Phylogeny , RNA, Ribosomal , RNA, Transfer/genetics , Whole Genome Sequencing
8.
Biomed Res Int ; 2019: 4370258, 2019.
Article in English | MEDLINE | ID: mdl-31467890

ABSTRACT

The complete chloroplast genome of J. flava, an endangered medicinal plant in Saudi Arabia, was sequenced and compared with cp genome of three Acanthaceae species to characterize the cp genome, identify SSRs, and also detect variation among the cp genomes of the sampled Acanthaceae. NOVOPlasty was used to assemble the complete chloroplast genome from the whole genome data. The cp genome of J. flava was 150, 888bp in length with GC content of 38.2%, and has a quadripartite structure; the genome harbors one pair of inverted repeat (IRa and IRb 25, 500bp each) separated by large single copy (LSC, 82, 995 bp) and small single copy (SSC, 16, 893 bp). There are 132 genes in the genome, which includes 80 protein coding genes, 30 tRNA, and 4 rRNA; 113 are unique while the remaining 19 are duplicated in IR regions. The repeat analysis indicates that the genome contained all types of repeats with palindromic occurring more frequently; the analysis also identified total number of 98 simple sequence repeats (SSR) of which majority are mononucleotides A/T and are found in the intergenic spacer. The comparative analysis with other cp genomes sampled indicated that the inverted repeat regions are conserved than the single copy regions and the noncoding regions show high rate of variation than the coding region. All the genomes have ndhF and ycf1 genes in the border junction of IRb and SSC. Sequence divergence analysis of the protein coding genes showed that seven genes (petB, atpF, psaI, rpl32, rpl16, ycf1, and clpP) are under positive selection. The phylogenetic analysis revealed that Justiceae is sister to Ruellieae. This study reported the first cp genome of the largest genus in Acanthaceae and provided resources for studying genetic diversity of J. flava as well as resolving phylogenetic relationships within the core Acanthaceae.


Subject(s)
Acanthaceae/genetics , Evolution, Molecular , Genome, Chloroplast/genetics , Justicia/genetics , Acanthaceae/classification , Chloroplasts/genetics , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Phylogeny , Whole Genome Sequencing
9.
Mitochondrial DNA B Resour ; 4(2): 3729-3730, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-33366163

ABSTRACT

Blepharis ciliaris is an important medicinal plant and endemic species in Saudi Arabia. This study reported the complete chloroplast genome of B. ciliaris, the second to be sequence in non cystolith clade of Acanthaceae. The genome is 149, 717 bp in size and consisted of a pair of inverted repeat (25, 331 bp each) separating the two single copy region, the large single copy (LSC) 82, 057 bp and small single copy SSC 16, 998 bp. The plastome has overall GC content of 38.5% and 112 genes comprising of 79 protein coding genes, 30 tRNA genes and 4 rRNA genes. The phylogenetic relationship analysis showed that B. ciliaris is sister to Aphelandra knappiea. The cp genome reported in this study will useful in genetic diversity and evolutionary studies of the species.

SELECTION OF CITATIONS
SEARCH DETAIL
...