Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3450, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664395

ABSTRACT

Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.


Subject(s)
Chiroptera , Ferrets , Influenza A Virus, H9N2 Subtype , Orthomyxoviridae Infections , Virus Replication , Animals , Ferrets/virology , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/physiology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/isolation & purification , Chiroptera/virology , Humans , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , Mice , Phylogeny , Influenza, Human/transmission , Influenza, Human/virology , Lung/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood
2.
Cell Rep Med ; 5(3): 101474, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508136

ABSTRACT

Subvariants of the Omicron lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) efficiently escape neutralizing antibody responses induced by both vaccination and infection with antigenically distinct variants. Here, we describe the potency and breadth of neutralizing and binding antibody responses against a large panel of variants following an Omicron BA.1 or BA.2 breakthrough infection in a heterogeneous cohort of individuals with diverse exposure histories. Both BA.1 and BA.2 breakthrough infections significantly boost antibody levels and broaden antibody reactivity. However, this broader immunity induced by BA.1 and BA.2 breakthrough infections does not neutralize Omicron BQ and XBB subvariants efficiently. While these subvariants are not neutralized well by post-breakthrough sera, suggesting escape, binding non-neutralizing antibody responses are sustained. In summary, our data suggest that while BA.1 and BA.2 breakthrough infections broaden the immune response to SARS-CoV-2 spike, the induced neutralizing antibody response is still outpaced by viral evolution.


Subject(s)
Antibody Formation , COVID-19 , Humans , Breakthrough Infections , SARS-CoV-2 , Antibodies, Neutralizing
3.
Immunity ; 57(3): 587-599.e4, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38395697

ABSTRACT

It is thought that mRNA-based vaccine-induced immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wanes quickly, based mostly on short-term studies. Here, we analyzed the kinetics and durability of the humoral responses to SARS-CoV-2 infection and vaccination using >8,000 longitudinal samples collected over a 3-year period in New York City. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state antibody titers than naive individuals. Antibody kinetics were characterized by two phases: an initial rapid decay, followed by a stabilization phase with very slow decay. Booster vaccination equalized the differences in antibody concentration between participants with and without hybrid immunity, but the peak antibody titers decreased with each successive antigen exposure. Breakthrough infections increased antibodies to similar titers as an additional vaccine dose in naive individuals. Our study provides strong evidence that SARS-CoV-2 antibody responses are long lasting, with initial waning followed by stabilization.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , Antibody Formation , Vaccination , Immunization, Secondary , mRNA Vaccines , Antibodies, Viral
4.
mBio ; 15(1): e0225023, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38112467

ABSTRACT

IMPORTANCE: As demonstrated by severe acute respiratory syndrome coronavirus 2, coronaviruses pose a significant pandemic threat. Here, we show that coronavirus disease 2019 mRNA vaccination can induce significant levels of cross-reactive antibodies against diverse coronavirus spike proteins. While these antibodies are binding antibodies that likely have little neutralization capacity and while their contribution to cross-protection is unclear, it is possible that they may play a role in protection from progression to severe disease with novel coronaviruses.


Subject(s)
COVID-19 , Humans , Prevalence , SARS-CoV-2/genetics , Cross Reactions , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
5.
J Infect Dis ; 228(5): 564-575, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37104046

ABSTRACT

BACKGROUND: The number of exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to vaccine antigens affect the magnitude and avidity of the polyclonal response. METHODS: We studied binding and avidity of different antibody isotypes to the spike, the receptor-binding domain (RBD), and the nucleoprotein (NP) of wild-type (WT) and BA.1 SARS-CoV-2 in convalescent, mRNA vaccinated and/or boosted, hybrid immune individuals and in individuals with breakthrough cases during the peak of the BA.1 wave. RESULTS: We found an increase in spike-binding antibodies and antibody avidity with increasing number of exposures to infection and/or vaccination. NP antibodies were detectible in convalescent individuals and a proportion of breakthrough cases, but they displayed low avidity. Omicron breakthrough infections elicited high levels of cross-reactive antibodies between WT and BA.1 antigens in vaccinated individuals without prior infection directed against the spike and RBD. The magnitude of the antibody response and avidity correlated with neutralizing activity against WT virus. CONCLUSIONS: The magnitude and quality of the antibody response increased with the number of antigenic exposures, including breakthrough infections. However, cross-reactivity of the antibody response after BA.1 breakthroughs, was affected by the number of prior exposures.


Subject(s)
Antibodies, Viral , Antibody Affinity , Breakthrough Infections , COVID-19 , SARS-CoV-2 , Animals , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Breakthrough Infections/blood , Breakthrough Infections/immunology , Chlorocebus aethiops , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Serological Testing , SARS-CoV-2/immunology , Vaccination , Vero Cells , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use
6.
J Biomol Struct Dyn ; 41(23): 14179-14196, 2023.
Article in English | MEDLINE | ID: mdl-36764830

ABSTRACT

CTLA-4 is an immune checkpoint receptor that negatively regulates the T-cell function expressed after T-cell activation to break the immune response. The current study predicted the genomic analysis to explore the functional variations of missense SNPs in the human CTLA4 gene using PolyPhen2, SIFT, PANTHER, PROVEAN, Fathmm, Mutation Assessor, PhD-SNP, SNPs&GO, SNAP2, and MutPred2. Phylogenetic conservation protein was predicted by ConSurf. Protein structural analysis was carried out by I-Mutant3, MUpro, iStable2, PremPS, and ERIS servers. Molecular dynamics trajectory analysis (RMSD, RMSF, Rg, SASA, H-bonds, and PCA) was performed to analyze the dynamic behavior of native and mutant CTLA-4 at the atomic level. Our in-silico analysis suggested that C58S, G118R, P137Q, P137R, P137L, P138T, and G146L variants were predicted to be the most deleterious missense variants and highly conserved residues. Moreover, the molecular dynamics analysis proposed a decrease in the protein stability and compactness with the P137R and P138T highlighting the impact of these variants on the function of the CTLA-4 protein.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Mutation, Missense , Humans , CTLA-4 Antigen/genetics , Phylogeny , Mutation , Polymorphism, Single Nucleotide/genetics , Computational Biology
7.
Hum Immunol ; 84(2): 80-88, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36257838

ABSTRACT

Human Mannose-binding lectin (MBL) is a protein encoded by MBL2 gene involved in the activation of the lectin-complement pathway. Several studies emphasized the role of MBL2 gene in several infectious diseases' susceptibility, including HIV-1 infection. We aim to investigate the impact of 10 MBL2 gene polymorphisms located in the promoter, 5'UTR and exon 1 regions on HIV-1 physiopathology. The polymorphisms genotyping of 400 individuals, which 200 were HIV-1 positive patients and 200 were controls, was performed by PCR-sequencing. Our results showed that rs503037 and rs1800451 polymorphisms are associated with a high risk of HIV-1 infection susceptibility while rs7096206 and rs11003123 showed a protective effect. A significant association between haplotype CGA and HIV-1 infection susceptibility was also found in the exon 1 region. Moreover, rs11003124, rs7084554, rs36014597 and rs11003123 polymorphisms revealed an association with treatment response outcome as measured by RNA viral load. This study highlights the importance of MBL2 polymorphisms in the modulation of HIV-1 infection susceptibility and the contribution to treatment response outcomes among Moroccan subjects.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Mannose-Binding Lectin , Humans , Genotype , Polymorphism, Genetic , Haplotypes , Mannose-Binding Lectin/genetics , HIV Infections/genetics , Genetic Predisposition to Disease
8.
bioRxiv ; 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36093349

ABSTRACT

Neutralization assays are experimental surrogates for the effectiveness of infection- or vaccine-elicited polyclonal antibodies and therapeutic monoclonal antibodies targeting SARS-CoV-2. However, the measured neutralization can depend on details of the experimental assay. Here we systematically assess how ACE2 expression in target cells affects neutralization by antibodies to different spike epitopes in lentivirus pseudovirus neutralization assays. For high ACE2-expressing target cells, receptor binding domain (RBD) antibodies account for nearly all neutralizing activity in polyclonal human sera. But for lower ACE2-expressing target cells, antibodies targeting regions outside the RBD make a larger (although still modest) contribution to serum neutralization. These serum-level results are mirrored for monoclonal antibodies: N-terminal domain (NTD) antibodies and RBD antibodies that do not compete for ACE2 binding incompletely neutralize on high ACE2-expressing target cells, but completely neutralize on cells with lower ACE2 expression. Our results show that ACE2 expression level in the target cells is an important experimental variable, and that high ACE2 expression emphasizes the role of a subset of RBD-directed antibodies.

9.
Viruses ; 14(9)2022 09 16.
Article in English | MEDLINE | ID: mdl-36146867

ABSTRACT

Neutralization assays are experimental surrogates for the effectiveness of infection- or vaccine-elicited polyclonal antibodies and therapeutic monoclonal antibodies targeting SARS-CoV-2. However, the measured neutralization can depend on the details of the experimental assay. Here, we systematically assess how ACE2 expression in target cells affects neutralization by antibodies to different spike epitopes in lentivirus pseudovirus neutralization assays. For high ACE2-expressing target cells, receptor-binding domain (RBD) antibodies account for nearly all neutralizing activity in polyclonal human sera. However, for lower ACE2-expressing target cells, antibodies targeting regions outside the RBD make a larger (although still modest) contribution to serum neutralization. These serum-level results are mirrored for monoclonal antibodies: N-terminal domain (NTD) antibodies and RBD antibodies that do not compete for ACE2 binding incompletely neutralize on high ACE2-expressing target cells, but completely neutralize on cells with lower ACE2 expression. Our results show that the ACE2 expression level in the target cells is an important experimental variable, and that high ACE2 expression emphasizes the role of a subset of RBD-directed antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , Spike Glycoprotein, Coronavirus
10.
PLoS One ; 16(10): e0258750, 2021.
Article in English | MEDLINE | ID: mdl-34648601

ABSTRACT

Dipeptidyl peptidase 4 (DPP4) has been identified as the main receptor of MERS-CoV facilitating its cellular entry and enhancing its viral replication upon the emergence of this novel coronavirus. DPP4 receptor is highly conserved among many species, but the genetic variability among direct binding residues to MERS-CoV restrained its cellular tropism to humans, camels and bats. The occurrence of natural polymorphisms in human DPP4 binding residues is not well characterized. Therefore, we aimed to assess the presence of potential mutations in DPP4 receptor binding domain (RBD) among a population highly exposed to MERS-CoV in Morocco and predict their effect on DPP4 -MERS-CoV binding affinity through a computational approach. DPP4 synonymous and non-synonymous mutations were identified by sanger sequencing, and their effect were modelled by mutation prediction tools, docking and molecular dynamics (MD) simulation to evaluate structural changes in human DPP4 protein bound to MERS-CoV S1 RBD protein. We identified eight mutations, two synonymous mutations (A291 =, R317 =) and six non-synonymous mutations (N229I, K267E, K267N, T288P, L294V, I295L). Through docking and MD simulation techniques, the chimeric DPP4 -MERS-CoV S1 RBD protein complex models carrying one of the identified non-synonymous mutations sustained a stable binding affinity for the complex that might lead to a robust cellular attachment of MERS-CoV except for the DPP4 N229I mutation. The latter is notable for a loss of binding affinity of DPP4 with MERS-CoV S1 RBD that might affect negatively on cellular entry of the virus. It is important to confirm our molecular modelling prediction with in-vitro studies to acquire a broader overview of the effect of these identified mutations.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Molecular Dynamics Simulation , Morocco , Protein Binding , Young Adult
11.
Euro Surveill ; 24(48)2019 Nov.
Article in English | MEDLINE | ID: mdl-31796154

ABSTRACT

BackgroundMiddle East respiratory syndrome coronavirus (MERS-CoV) remains a major concern for global public health. Dromedaries are the source of human zoonotic infection. MERS-CoV is enzootic among dromedaries on the Arabian Peninsula, the Middle East and in Africa. Over 70% of infected dromedaries are found in Africa. However, all known zoonotic cases of MERS have occurred in the Arabian Peninsula with none being reported in Africa.AimWe aimed to investigate serological evidence of MERS-CoV infection in humans living in camel-herding areas in Morocco to provide insights on whether zoonotic transmission is taking place.MethodsWe carried out a cross sectional seroprevalence study from November 2017 through January 2018. We adapted a generic World Health Organization MERS-CoV questionnaire and protocol to assess demographic and risk factors of infection among a presumed high-risk population. ELISA, MERS-CoV spike pseudoparticle neutralisation tests (ppNT) and plaque neutralisation tests (PRNT) were used to assess MERS-CoV seropositivity.ResultsSerum samples were collected from camel slaughterhouse workers (n = 137), camel herders (n = 156) and individuals of the general population without occupational contact with camels but living in camel herding areas (n = 186). MERS-CoV neutralising antibodies with ≥ 90% reduction of plaque numbers were detected in two (1.5%) slaughterhouse workers, none of the camel herders and one individual from the general population (0.5%).ConclusionsThis study provides evidence of zoonotic transmission of MERS-CoV in Morocco in people who have direct or indirect exposure to dromedary camels.


Subject(s)
Antibodies, Neutralizing/blood , Camelus/virology , Coronavirus Infections/diagnosis , Disease Reservoirs/veterinary , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Occupational Exposure , RNA, Viral/isolation & purification , Zoonoses/transmission , Abattoirs , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Viral/blood , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Cross-Sectional Studies , Disease Reservoirs/virology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/blood , Middle Aged , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Morocco/epidemiology , Neutralization Tests , Occupations , RNA, Viral/genetics , Risk Factors , Seroepidemiologic Studies , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...