Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 13(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35621792

ABSTRACT

A new device for assessing Varroa destructor (Anderson−Truman) mite infestations in honey bee colonies was designed, tested, and evaluated against the sugar roll method, a widely used method by beekeepers. The Varroa Shaker Device (VSD) is constructed of polyvinyl chloride (PVC) pipe that separates into three parts. Inside the shaker there are two mesh sizes; the larger mesh separates the bees from the mites, and the smaller mesh captures the mites. The VSD can be used by shaking bees with only water as the wash solution. The recovery of mites using the VSD is >90%, which is such as that recorded for using the sugar roll method. Our tests demonstrated that the VSD accurately assessed mite loads when fewer than 250 bees were sampled and shaken with 250 mL of water for one minute. To assure accurate mite counts are achieved with any sampling device, honey bees should be taken from frames with an open and/or capped brood where the mites are more likely located. The VSD can be used in both laboratory and field settings to accurately assess honey bee colonies for levels of mite infestation or for collecting live mites for research purposes.

2.
J Insect Sci ; 21(6)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34723329

ABSTRACT

One of the most serious bacterial pathogens of Western honey bees (Apis mellifera Linnaeus [Hymenoptera: Apidae]) is Melissococcus plutonius, the cause of the disease European foulbrood. Because European foulbrood is highly variable, with diverse outcomes at both the individual and colony levels, it is difficult to diagnose through visual inspection alone. Common lab diagnostic techniques include microscopic examination and molecular detection through PCR. In 2009, a lateral flow device was developed and validated for field diagnosis of European foulbrood. At the time, M. plutonius was thought to be genetically homogenous, but we have subsequently learned that this bacterium exists as multiple strains, including some strains that are classified as 'atypical' for which the lateral flow device is potentially less effective. These devices are increasingly used in the United States, though they have never been validated using strains from North America. It is essential to validate this device in multiple locations as different strains of M. plutonius circulate in different geographical regions. In this study, we validate the field use of the lateral flow device compared to microscopic examination and qPCR on larval samples from 78 commercial honey bee colonies in the United States with visual signs of infection. In this study, microscopic diagnosis was more sensitive than the lateral flow device (sensitivity = 97.40% and 89.47%, respectively), and we found no false positive results with the lateral flow device. We find high concurrence between the three diagnostic techniques, and all three methods are highly sensitive for diagnosing European foulbrood.


Subject(s)
Bacterial Infections/veterinary , Bees/microbiology , Enterococcaceae , Animals , Bacterial Infections/diagnosis , Real-Time Polymerase Chain Reaction , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...