Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(7): 12967-12981, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571103

ABSTRACT

We demonstrate efficient anti reflection coatings based on adiabatic index matching obtained via nano-imprint lithography. They exhibit high total transmission, achromaticity (99.5% < T < 99.8% from 390 to 900 nm and 99% < T < 99.5% from 800 to 1600 nm) and wide angular acceptance (T > 99% up to 50 degrees). Our devices show high laser-induced damage thresholds in the sub-picosecond (>5 J/cm2 at 1030 nm, 500 fs), nanosecond (>150 J/cm2 at 1064 nm, 12 ns and >100 J/cm2 at 532 nm, 12 ns) regimes, and low absorption in the CW regime (<1.3 ppm at 1080 nm), close to those of the fused silica substrate.

3.
Sci Rep ; 13(1): 21352, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049444

ABSTRACT

We introduce a novel technique for designing color filter metasurfaces using a data-driven approach based on deep learning. Our innovative approach employs inverse design principles to identify highly efficient designs that outperform all the configurations in the dataset, which consists of 585 distinct geometries solely. By combining Multi-Valued Artificial Neural Networks and back-propagation optimization, we overcome the limitations of previous approaches, such as poor performance due to extrapolation and undesired local minima. Consequently, we successfully create reliable and highly efficient configurations for metasurface color filters capable of producing exceptionally vivid colors that go beyond the sRGB gamut. Furthermore, our deep learning technique can be extended to design various pixellated metasurface configurations with different functionalities.

4.
Opt Express ; 31(5): 9007-9017, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36860003

ABSTRACT

Dewetted, SiGe nanoparticles have been successfully exploited for light management in the visible and near-infrared, although their scattering properties have been so far only qualitatively studied. Here, we demonstrate that the Mie resonances sustained by a SiGe-based nanoantenna under tilted illumination, can generate radiation patterns in different directions. We introduce a novel dark-field microscopy setup that exploits the movement of the nanoantenna under the objective lens to spectrally isolate Mie resonances contribution to the total scattering cross-section during the same measurement. The knowledge of islands' aspect ratio is then benchmarked by 3D, anisotropic phase-field simulations and contributes to a correct interpretation of the experimental data.

5.
Nat Commun ; 13(1): 3820, 2022 07 02.
Article in English | MEDLINE | ID: mdl-35780187

ABSTRACT

Natural porous systems, such as soil, membranes, and biological tissues comprise disordered structures characterized by dead-end pores connected to a network of percolating channels. The release and dispersion of particles, solutes, and microorganisms from such features is key for a broad range of environmental and medical applications including soil remediation, filtration and drug delivery. Yet, owing to the stagnant and opaque nature of these disordered systems, the role of microscopic structure and flow on the dispersion of particles and solutes remains poorly understood. Here, we use a microfluidic model system that features a pore structure characterized by distributed dead-ends to determine how particles are transported, retained and dispersed. We observe strong tailing of arrival time distributions at the outlet of the medium characterized by power-law decay with an exponent of 2/3. Using numerical simulations and an analytical model, we link this behavior to particles initially located within dead-end pores, and explain the tailing exponent with a hopping across and rolling along the streamlines of vortices within dead-end pores. We quantify such anomalous dispersal by a stochastic model that predicts the full evolution of arrival times. Our results demonstrate how microscopic flow structures can impact macroscopic particle transport.


Subject(s)
Filtration , Microfluidics , Models, Biological , Porosity , Soil
6.
ACS Appl Mater Interfaces ; 13(44): 53021-53029, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34708655

ABSTRACT

We combine a gas-adsorbent microporous hybrid silica layer and a dense TiO2 Mie resonator array (metasurface), both obtained by sol-gel deposition and nanoimprint lithography, to form nanocomposite systems with high sensitivity for refractive index (RI) variations induced by gas adsorption. Using optical transduction based on direct specular reflection, we show spectral shifts of 4470 nm/RIU corresponding to 0.2 nm/ppm gas (air concentration) and reflection intensity changes of R* = 17 (R/RIU) and 0.55 × 10-3 R/ppm (air concentration). The metasurface is composed of hexagonally arranged TiO2 nanopillar arrays, whereas the surrounding sensitive material is a class II microporous hybrid silica, containing methyl and phenyl covalently bonded organic functions. This hybrid layer shows efficient adsorption capability of volatile organic molecules such as isopropanol, which is used to induce slight variations of RI around the TiO2 antennas. Specular reflectance variations at 45° incidence and refractive index measurements are performed using a spectroscopic ellipsometer. The presence of the titania metasurface enhances the signal by almost an order of magnitude with respect to the 2D counterpart (simulated as an effective medium approximation) and is attributed to the antenna effect, enhancing the interaction of the confined electromagnetic wave with the sensitive microporous medium. This sol-gel nanocomposite system presents many advantages such as high throughput and low-cost elaboration of elements and a high chemical, mechanical, and thermal resistance, ensuring high stability as a potential gas-sensitive nanocomposite layer for long periods. This work is a case study of improving the sensitivity of sol-gel gas-sensitive materials in optical transduction, which will be exploited in further works to develop artificial noses.

7.
ACS Appl Mater Interfaces ; 13(40): 47860-47870, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34591453

ABSTRACT

Reversible quasi-guided modes (QGMs) are observed in titanium dioxide (TiO2) metasurface arrays fabricated via soft nanoimprint lithography. A TiO2 layer between the nanopillar array and the substrate can facilitate the propagation of QGMs. This layer is porous, allowing for the tuning of the layer properties by incorporating another material. The presence of the QGMs is strongly dependent on the refractive index of the TiO2 layer. QGMs are not supported if the refractive index of the porous TiO2 is too low. It is demonstrated that after depositing R6G on the array QGMs can be observed as very strong and narrow reflectance peaks and transmittance dips. Furthermore, as the second material can penetrate through the pores into the layer it can experience the regions of high field enhancement associated with the QGMs. These results are of interest for a wide range of applications including but not limited to sensing, nonlinear optics, and emission control.

8.
ACS Appl Mater Interfaces ; 13(31): 37761-37774, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34320811

ABSTRACT

Fabrication and scaling of disordered hyperuniform materials remain hampered by the difficulties in controlling the spontaneous phenomena leading to this novel kind of exotic arrangement of objects. Here, we demonstrate a hybrid top-down/bottom-up approach based on sol-gel dip-coating and nanoimprint lithography for the faithful reproduction of disordered hyperuniform metasurfaces in metal oxides. Nano- to microstructures made of silica and titania can be directly printed over several cm2 on glass and on silicon substrates. First, we describe the polymer mold fabrication starting from a hard master obtained via spontaneous solid-state dewetting of SiGe and Ge thin layers on SiO2. Then, we assess the effective disordered hyperuniform character of master and replica and the role of the thickness of the sol-gel layer on the metal oxide replicas and on the presence of a residual layer underneath. Finally, as a potential application, we show the antireflective character of titania structures on silicon. Our results are relevant for the realistic implementation over large scales of disordered hyperuniform nano- and microarchitectures made of metal oxides, thus opening their exploitation in the framework of wet chemical assembly.

9.
Nanomaterials (Basel) ; 11(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578657

ABSTRACT

We provide an extensive and systematic investigation of exciton dynamics in droplet epitaxial quantum dots comparing the cases of (311)A, (001), and (111)A surfaces. Despite a similar s-shell exciton structure common to the three cases, the absence of a wetting layer for (311)A and (111)A samples leads to a larger carrier confinement compared to (001), where a wetting layer is present. This leads to a more pronounced dependence of the binding energies of s-shell excitons on the quantum dot size and to the strong anti-binding character of the positive-charged exciton for smaller quantum dots. In-plane geometrical anisotropies of (311)A and (001) quantum dots lead to a large electron-hole fine interaction (fine structure splitting (FSS) ∼100 µeV), whereas for the three-fold symmetric (111)A counterpart, this figure of merit is reduced by about one order of magnitude. In all these cases, we do not observe any size dependence of the fine structure splitting. Heavy-hole/light-hole mixing is present in all the studied cases, leading to a broad spread of linear polarization anisotropy (from 0 up to about 50%) irrespective of surface orientation (symmetry of the confinement), fine structure splitting, and nanostructure size. These results are important for the further development of ideal single and entangled photon sources based on semiconductor quantum dots.

10.
ACS Appl Mater Interfaces ; 13(1): 1807-1817, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33356130

ABSTRACT

We report a novel approach for engineering tensely strained Si layers on a relaxed silicon germanium on insulator (SGOI) film using a combination of condensation, annealing, and epitaxy in conditions specifically chosen from elastic simulations. The study shows the remarkable role of the SiO2 buried oxide layer (BOX) on the elastic behavior of the system. We show that tensely strained Si can be engineered by using alternatively rigidity (at low temperature) and viscoelasticity (at high temperature) of the SiO2 substrate. In these conditions, we get a Si strained layer perfectly flat and free of defects on top of relaxed Si1-xGex. We found very specific annealing conditions to relax SGOI while keeping a homogeneous Ge concentration and an excellent thickness uniformity resulting from the viscoelasticity of SiO2 at this temperature, which would allow layer-by-layer matter redistribution. Remarkably, the Si layer epitaxially grown on relaxed SGOI remains fully strained with -0.85% tensile strain. The absence of strain sharing (between Si1-xGex and Si) is explained by the rigidity of the Si1-xGex/BOX interface at low temperature. Elastic simulations of the real system show that, because of the very specific elastic characteristics of SiO2, there are unique experimental conditions that both relax Si1-xGex and keep Si strained. Various epitaxial processes could be revisited in light of these new results. The generic and simple process implemented here meets all the requirements of the microelectronics industry and should be rapidly integrated in the fabrication lines of large multifinger 2.5 V n-type MOSFET on SOI used for RF-switch applications and for many other applications.

11.
Nanotechnology ; 32(2): 025303, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33007762

ABSTRACT

We report on a systematic analysis of phosphorus diffusion in silicon on insulator thin film via spin-on-dopant process (SOD). This method is used to provide an impurity source for semiconductor junction fabrication. The dopant is first spread into the substrate via SOD and then diffused by a rapid thermal annealing process. The dopant concentration and electron mobility were characterized at room and low temperature by four-probe and Hall bar electrical measurements. Time-of-flight-secondary ion mass spectroscopy was performed to estimate the diffusion profile of phosphorus for different annealing treatments. We find that a high phosphorous concentration (greater than 1020 atoms cm-3) with a limited diffusion of other chemical species and allowing to tune the electrical properties via annealing at high temperature for short time. The ease of implementation of the process, the low cost of the technique, the possibility to dope selectively and the uniform doping manufactured with statistical process control show that the methodology applied is very promising as an alternative to the conventional doping methods for the implementation of optoelectronic devices.

12.
Nanomaterials (Basel) ; 10(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348747

ABSTRACT

We report on the dewetting process, in a high vacuum environment, of amorphous Ge thin films on SiO2/Si (001). A detailed insight of the dewetting is obtained by in situ reflection high-energy electron diffraction and ex situ scanning electron microscopy. These characterizations show that the amorphous Ge films dewet into Ge crystalline nano-islands with dynamics dominated by crystallization of the amorphous material into crystalline nano-seeds and material transport at Ge islands. Surface energy minimization determines the dewetting process of crystalline Ge and controls the final stages of the process. At very high temperatures, coarsening of the island size distribution is observed.

13.
Phys Rev Lett ; 125(12): 126101, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016725

ABSTRACT

Materials featuring anomalous suppression of density fluctuations over large length scales are emerging systems known as disordered hyperuniform. The underlying hidden order renders them appealing for several applications, such as light management and topologically protected electronic states. These applications require scalable fabrication, which is hard to achieve with available top-down approaches. Theoretically, it is known that spinodal decomposition can lead to disordered hyperuniform architectures. Spontaneous formation of stable patterns could thus be a viable path for the bottom-up fabrication of these materials. Here, we show that monocrystalline semiconductor-based structures, in particular Si_{1-x}Ge_{x} layers deposited on silicon-on-insulator substrates, can undergo spinodal solid-state dewetting featuring correlated disorder with an effective hyperuniform character. Nano- to micrometric sized structures targeting specific morphologies and hyperuniform character can be obtained, proving the generality of the approach and paving the way for technological applications of disordered hyperuniform metamaterials. Phase-field simulations explain the underlying nonlinear dynamics and the physical origin of the emerging patterns.

14.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937876

ABSTRACT

Droplet epitaxy allows the efficient fabrication of a plethora of 3D, III-V-based nanostructures on different crystalline orientations. Quantum dots grown on a (311)A-oriented surface are obtained with record surface density, with or without a wetting layer. These are appealing features for quantum dot lasing, thanks to the large density of quantum emitters and a truly 3D lateral confinement. However, the intimate photophysics of this class of nanostructures has not yet been investigated. Here, we address the main optical and electronic properties of s-shell excitons in individual quantum dots grown on (311)A substrates with photoluminescence spectroscopy experiments. We show the presence of neutral exciton and biexciton as well as positive and negative charged excitons. We investigate the origins of spectral broadening, identifying them in spectral diffusion at low temperature and phonon interaction at higher temperature, the presence of fine interactions between electron and hole spin, and a relevant heavy-hole/light-hole mixing. We interpret the level filling with a simple Poissonian model reproducing the power excitation dependence of the s-shell excitons. These results are relevant for the further improvement of this class of quantum emitters and their exploitation as single-photon sources for low-density samples as well as for efficient lasers for high-density samples.

15.
Nanotechnology ; 31(19): 195602, 2020 May 08.
Article in English | MEDLINE | ID: mdl-31931487

ABSTRACT

All-dielectric photonics is a rapidly developing field of optics and material science. The main interest at visible and near-infrared frequencies is light management using high-refractive-index Mie-resonant dielectric particles. Most work in this area of research focuses on exploiting Si-based particles. Here, we study monocrystalline Mie-resonant particles made of Ge-rich SiGe alloys with refractive index higher than that of Si. These islands are formed via solid state dewetting of SiGe flat layers by using two different processes: (i) dewetting of monocrystalline SiGe layers (60%-80% Ge content) obtained via Ge condensation of SiGe on silicon on insulator; and (ii) dewetting of a SiGe layer deposited via molecular beam epitaxy on silicon on insulator and ex situ Ge condensation, forming a Ge-rich shell surrounding a SiGe-core. Using high-spatial-resolution Raman microscopy we monitor Ge content x and strain ϵ of flat layers and SiGe-islands. We observe strain relaxation associated with formation of trading dislocations in the SiGe islands compared to the starting SiGe layers, as confirmed by TEM images. For initial high Ge concentration in the flat layers, the corresponding Ge content in the dewetted islands is lower, owing to diffusion of Si atoms from Si or SiO2 into SiGe islands. The Ge content also varies from particle to particle on the same sample. Size and shape of the dewetted particles depend on the fabrication process: thicker initial SiGe layers lead to larger particles. Samples with narrow island size distribution display rather sharp Mie resonances in the 1000-2500 nm spectral range. Larger islands display Mie resonances at longer wavelength. Positions of the resonances are in agreement with the theoretical calculations in the discrete dipole approximation.

16.
Nat Commun ; 10(1): 5632, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31822679

ABSTRACT

Large-scale, defect-free, micro- and nano-circuits with controlled inter-connections represent the nexus between electronic and photonic components. However, their fabrication over large scales often requires demanding procedures that are hardly scalable. Here we synthesize arrays of parallel ultra-long (up to 0.75 mm), monocrystalline, silicon-based nano-wires and complex, connected circuits exploiting low-resolution etching and annealing of thin silicon films on insulator. Phase field simulations reveal that crystal faceting and stabilization of the wires against breaking is due to surface energy anisotropy. Wires splitting, inter-connections and direction are independently managed by engineering the dewetting fronts and exploiting the spontaneous formation of kinks. Finally, we fabricate field-effect transistors with state-of-the-art trans-conductance and electron mobility. Beyond the first experimental evidence of controlled dewetting of patches featuring a record aspect ratio of [Formula: see text]1/60000 and self-assembled [Formula: see text]mm long nano-wires, our method constitutes a distinct and promising approach for the deterministic implementation of atomically-smooth, mono-crystalline electronic and photonic circuits.

17.
Nanoscale ; 11(16): 7798-7804, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30957818

ABSTRACT

We present a novel self-assembly route to align SiGe quantum dots. By a combination of theoretical analyses and experimental investigation, we show that epitaxial SiGe quantum dots can cluster in ordered closely packed assemblies, revealing an attractive phenomenon. We compute nucleation energy barriers, accounting for elastic effects between quantum dots through both elastic energy and strain-dependent surface energy. If the former is mostly repulsive, we show that the decrease in the surface energy close to an existing island reduces the nucleation barrier. It subsequently increases the probability of nucleation close to an existing island, and turns out to be equivalent to an effective attraction between dots. We show by Monte-Carlo simulations that this effect describes well the experimental results, revealing a new mechanism ruling self-organisation of quantum dots. Such a generic process could be observed in various heterogeneous systems and could pave the way for a wide range of applications.

18.
ACS Appl Mater Interfaces ; 11(4): 4439-4446, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30629407

ABSTRACT

A simple double thin-film coating-based device is proposed to quantify the ethanol content in humid air featuring a 10 ppm resolution and spanning a dynamic range from 0 to 1000 ppm. The transduction involves the measurement of the direct optical reflection intensity, changing upon refractive index variations induced by water and ethanol adsorption within the coatings. The first thin-film coating is a microporous methyl-functionalized, silica xerogel material more sensitive to alcohol, and the second one is a microporous pure silica xerogel material more sensitive to water. The precision of the sensor is achieved through a mathematical treatment applied on the time resolved adsorption period. Reflection signals of both the ethanol- and water-sensitive coatings are taken into account in the treatment to correct for differences in ambient conditions (temperature, relative humidity, presence of volatile organic compounds) within the same chamber previous to data analysis, which corresponds to realistic operating conditions. As the adsorption mechanism is governed by molecular dynamic equilibrium, these sensors are fast and instantaneously regenerated in ambient air. The sensor is easy to assemble and was reusable for a period exceeding 1 year (maximal tested time).

19.
Sci Rep ; 8(1): 2891, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29440693

ABSTRACT

Strain engineering is seen as a cost-effective way to improve the properties of electronic devices. However, this technique is limited by the development of the Asarro Tiller Grinfeld growth instability and nucleation of dislocations. Two strain engineering processes have been developed, fabrication of stretchable nanomembranes by deposition of SiGe on a sacrificial compliant substrate and use of lateral stressors to strain SiGe on Silicon On Insulator. Here, we investigate the influence of substrate softness and pre-strain on growth instability and nucleation of dislocations. We show that while a soft pseudo-substrate could significantly enhance the growth rate of the instability in specific conditions, no effet is seen for SiGe heteroepitaxy, because of the normalized thickness of the layers. Such results were obtained for substrates up to 10 times softer than bulk silicon. The theoretical predictions are supported by experimental results obtained first on moderately soft Silicon On Insulator and second on highly soft porous silicon. On the contrary, the use of a tensily pre-strained substrate is far more efficient to inhibit both the development of the instability and the nucleation of misfit dislocations. Such inhibitions are nicely observed during the heteroepitaxy of SiGe on pre-strained porous silicon.

20.
Nanoscale ; 10(3): 1420-1431, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29302657

ABSTRACT

Metal oxide (MOX) surface nanopatterns can be prepared using Soft-Nano-Imprint-Lithography (soft-NIL) combined with sol-gel deposition processing. Even if sol-gel layers remain gel-like straight after deposition, their accurate replication from a mould remains difficult as a result of the fast evaporation-induced stiffening that prevents efficient mass transfer underneath the soft mould. The present work reports a detailed investigation of the role of the xerogel layer conditioning (temperature and relative humidity) prior to imprinting and its influence on the quality of the replication. This study is performed on four different systems namely titania, alumina, silica and yttria-stabilised zirconia. We demonstrate that the quality of the replica can be considerably improved without the use of sacrificial stabilising organic agents, but by simply applying an optimal aging at controlled temperature and relative humidity specific to each different reported MOX. In each case this condition corresponds to swelling the initial xerogels of around 30%vol by water absorption from humidity. We show that this degree of swelling represents the best compromise for sufficiently increasing the xerogel fluidity while limiting the shrinkage upon final thermal curing.

SELECTION OF CITATIONS
SEARCH DETAIL
...