Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Adv Mater ; 28(21): 4142-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27038256

ABSTRACT

The latest advances in colloidal-quantum-dot material processing are combined with a double-sided junction architecture, which is done by efficiently incorporating indium ions in the ZnO eletrode. This platform allows the collection of all photogenerated carriers even at the maximum power point. The increased depletion width in the device facilitates full carrier collection, leading to a record 10.8% power conversion efficiency.

2.
Adv Mater ; 28(2): 299-304, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26576685

ABSTRACT

A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

3.
Nano Lett ; 15(11): 7691-6, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26509283

ABSTRACT

The optoelectronic tunability offered by colloidal quantum dots (CQDs) is attractive for photovoltaic applications but demands proper band alignment at electrodes for efficient charge extraction at minimal cost to voltage. With this goal in mind, self-assembled monolayers (SAMs) can be used to modify interface energy levels locally. However, to be effective SAMs must be made robust to treatment using the various solvents and ligands required for to fabricate high quality CQD solids. We report robust self-assembled monolayers (R-SAMs) that enable us to increase the efficiency of CQD photovoltaics. Only by developing a process for secure anchoring of aromatic SAMs, aided by deposition of the SAMs in a water-free deposition environment, were we able to provide an interface modification that was robust against the ensuing chemical treatments needed in the fabrication of CQD solids. The energy alignment at the rectifying interface was tailored by tuning the R-SAM for optimal alignment relative to the CQD quantum-confined electron energy levels. This resulted in a CQD PV record power conversion efficiency (PCE) of 10.7% with enhanced reproducibility relative to controls.

4.
Adv Mater ; 26(37): 6491-6, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25124111

ABSTRACT

Hybrid nanostructures are made by coupling a room temperature coulomb blockade device with photoexcitable nano-rods. Direct electrochemical synthesis on nanoparticle chain arrays leads to the formation of semiconducting rods that are in direct contact with the nanoparticles and also spatial confined by them. This direct interfacing leads to mutual intermodulation between the two systems.


Subject(s)
Nanoparticles/chemistry , Electrochemical Techniques , Gold/chemistry , Metal Nanoparticles/chemistry , Semiconductors , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...