Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12195, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806561

ABSTRACT

High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.


Subject(s)
Antioxidants , Brassica napus , Seeds , Thiourea , Brassica napus/genetics , Brassica napus/drug effects , Brassica napus/growth & development , Brassica napus/metabolism , Thiourea/pharmacology , Thiourea/analogs & derivatives , Antioxidants/metabolism , Seeds/drug effects , Seeds/metabolism , Seeds/growth & development , Hot Temperature , Oxidative Stress/drug effects , Genotype , Heat-Shock Response/drug effects , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism
3.
Small ; : e2402651, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747046

ABSTRACT

SnTe, as a potential medium-temperature thermoelectric material, reaches a maximum power factor (PF) usually above 750 K, which is not conducive to continuous high-power output in practical applications. In this study, PF is maintained at high values between 18.5 and 25 µW cm-1 K-2 for Sn0.99In0.01Te-x wt% tourmaline samples within the temperature range of 323 to 873 K, driving the highest PFeng of 1.2 W m-1 K-1 and PFave of 22.5 µW cm-1 K-2, over 2.5 times that of pristine SnTe. Such an extraordinary PF is attributed to the synergy of resonant levels and Sn vacancy suppression. Specifically, the Seebeck coefficient increases dramatically, reaching 88 µV K-1 at room temperature. Meanwhile, by Sn vacancy suppression, carrier concentration, and mobility are optimized to ≈1019 cm-3 and 740 cm2 V-1 s-1, respectively. With the tourmaline compositing, Sn vacancies are further suppressed and the thermal conductivity simultaneously decreases, with the minimum lattice thermal conductivity of 0.9 W m-1 K-1. Finally, the zT value ≈0.8 is obtained in the Sn0.99In0.01Te sample. The peak of the power output density reaches 0.89 W cm-2 at a temperature difference of 600 K. Such SnTe alloys with high and "temperature-independent" PF will offer an option for realizing high output power in thermoelectric devices.

5.
Sci Rep ; 14(1): 10870, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740776

ABSTRACT

Pea, member of the plant family Leguminosae, play a pivotal role in global food security as essential legumes. However, their production faces challenges stemming from the detrimental impacts of abiotic stressors, leading to a concerning decline in output. Salinity stress is one of the major factors that limiting the growth and productivity of pea. However, biochar amendment in soil has a potential role in alleviating the oxidative damage caused by salinity stress. The purpose of the study was to evaluate the potential role of biochar amendment in soil that may mitigate the adverse effect of salinity stress on pea. The treatments of this study were, (a) Pea varieties; (i) V1 = Meteor and V2 = Green Grass, Salinity Stress, (b) Control (0 mM) and (ii) Salinity (80 mM) (c) Biochar applications; (i) Control, (ii) 8 g/kg soil (56 g) and (iii) 16 g/kg soil (112 g). Salinity stress demonstrated a considerable reduction in morphological parameters as Shoot and root length decreased by (29% and 47%), fresh weight and dry weight of shoot and root by (85, 63%) and (49, 68%), as well as area of leaf reduced by (71%) among both varieties. Photosynthetic pigments (chlorophyll a, b, and carotenoid contents decreased under 80 mM salinity up to (41, 63, 55 and 76%) in both varieties as compared to control. Exposure of pea plants to salinity stress increased the oxidative damage by enhancing hydrogen peroxide and malondialdehyde content by (79 and 89%), while amendment of biochar reduced their activities as, (56% and 59%) in both varieties. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were increased by biochar applications under salinity stress as, (49, 59, and 86%) as well as non-enzymatic antioxidants as, anthocyanin and flavonoids improved by (112 and 67%). Organic osmolytes such as total soluble proteins, sugars, and glycine betaine were increased up to (57, 83, and 140%) by biochar amendment. Among uptake of mineral ions, shoot and root Na+ uptake was greater (144 and 73%) in saline-stressed plants as compared to control, while shoot and root Ca2+ and K+ were greater up to (175, 119%) and (77, 146%) in biochar-treated plants. Overall findings revealed that 16 g/kg soil (112 g) biochar was found to be effective in reducing salinity toxicity by causing reduction in reactive oxygen species and root and shoot Na+ ions uptake and improving growth, physiological and anti-oxidative activities in pea plants (Fig. 1). Figure 1 A schematic diagram represents two different mechanisms of pea under salinity stress (control and 80 mM NaCl) with Biochar (8 and 16 g/kg soil).


Subject(s)
Charcoal , Pisum sativum , Soil , Pisum sativum/drug effects , Pisum sativum/growth & development , Pisum sativum/metabolism , Soil/chemistry , Photosynthesis/drug effects , Salt Stress/drug effects , Salinity , Chlorophyll/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism
6.
Int J Biol Macromol ; 266(Pt 2): 131393, 2024 May.
Article in English | MEDLINE | ID: mdl-38582476

ABSTRACT

Biocomposites developed using natural fibers serve as a sustainable alternative to synthetic composite materials. However, narrowing the performance gap between synthetic composites and biocomposites requires serious efforts. A promising approach is the modification of natural fibers using various chemical treatments. This paper investigates the potential of tannic acid (TA) treatment as a sustainable approach to enhance mechanical performance and reduce moisture absorption of flax fabric-reinforced biocomposites. The methodology involves the treatment of flax woven fabric with tannic acid, a naturally occurring polyphenolic compound, followed by the fabrication of biocomposite using a green epoxy matrix. The variables studied during treatment are TA concentration and processing time. Characterization of untreated and treated flax fabric and its composites was done using various analytical techniques such as FTIR spectroscopy, moisture absorption and mechanical testing (tensile strength, flexural strength, and impact resistance). FTIR spectroscopy of TA-treated flax confirmed attachment of aromatic rings and carbon double bond formation, thus serving for properties enhancement. The mechanical characterization of composites showed that properties are enhanced up to an optimum limit of concentration and processing time i.e., 1 % concentration and 30 min of processing. Moisture absorption of the TA-treated composite also reduced significantly as compared to untreated composites. These findings contribute towards the advancement in sustainable biocomposites and pave the way for their utilization in various applications.


Subject(s)
Flax , Polyphenols , Tannins , Tensile Strength , Textiles , Tannins/chemistry , Flax/chemistry , Spectroscopy, Fourier Transform Infrared , Mechanical Phenomena , Biocompatible Materials/chemistry
7.
Small ; : e2312003, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644338

ABSTRACT

Enhancing the thermoelectric performance of n-type polycrystalline SnSe is essential, addressing challenges posed by elevated thermal conductivity and compromised power factor inherent in its intrinsic p-type characteristics. This investigation utilized solid-state reactions and spark plasma sintering techniques for the synthesis of n-type SnSe. A significant improvement in the figure of merit (ZT) is achieved through strategic reduction in Se concentration and optimization of crystal orientation. The co-doping with Br and Ge further improves the material; Br amplifies carrier concentration, enhancing electrical conductivity, while Ge introduces effective phonon scattering centers. In the Br/Ge co-doped SnSe sample, thermal conductivity dropped to 0.38 Wm⁻¹K⁻¹, yielding a remarkable power factor of 662 µW mK- 2 at 773 K, culminating in a ZT of 1.34. This signifies a noteworthy 605% improvement over the pristine sample, underscoring the pivotal role of Ge doping in enhancing n-type material thermoelectric properties. The enhancement is attributed to Br doping introducing additional electronic states near the valence band, and Ge doping modifying the band structure, fostering resonant states near the conduction band. The Br/Ge co-doping further transforms the band structure, influencing electrical conductivity, Seebeck coefficient, and thermal conductivity, advancing the understanding and application of n-type SnSe materials for superior thermoelectric performance.

8.
Plants (Basel) ; 13(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38498409

ABSTRACT

Drought-induced metabolic dysregulation significantly enhances the production of reactive oxygen species (ROS), which, in turn, exerts a substantial influence on the oxidation-reduction regulatory status of cells. These ROS, under conditions of drought stress, become highly reactive entities capable of targeting various plant organelles, metabolites, and molecules. Consequently, disruption affects a wide array of metabolic pathways and eventually leads to the demise of the cells. Given this understanding, this study aimed to investigate the effects of different drought stress levels on the growth and development of the invasive weed Wedelia trilobata and its co-responding native counterpart Wedelia chinensis. Both plants evolved their defense mechanisms to increase their antioxidants and hormone contents to detoxify ROS to avoid oxidative damage. Still, the chlorophyll content fluctuated and increased in a polyethylene-glycol-simulated drought. The proline content also rose in the plants, but W. chinensis showed a significant negative correlation between proline and malondialdehyde in different plant parts. Thus, W. trilobata and W. chinensis exhibited diverse or unlike endogenous hormone regulation patterns under drought conditions. Meanwhile, W. trilobata and W. chinensis pointedly increased the content of indole acetic acid and gibberellic acid in a different drought stress environment. A positive correlation was found between endogenous hormones in other plant parts, including in the roots and leaves. Both simulated and natural drought conditions exerted a significant influence on both plant species, with W. trilobata displaying superior adaptation characterized by enhanced growth, bolstered antioxidant defense mechanisms, and heightened hormonal activities.

9.
Biol Rev Camb Philos Soc ; 99(3): 753-777, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38174626

ABSTRACT

Weed communities influence the dynamics of ecosystems, particularly in disturbed environments where anthropogenic activities often result in higher pollution. Understanding the dynamics existing between native weed communities and invasive species in disturbed environments is crucial for effective management and normal ecosystem functioning. Recognising the potential resistance of native weed communities to invasion in disturbed environments can help identify suitable native plants for restoration operations. This review aims to investigate the adaptations exhibited by native and non-native weeds that may affect invasions within disturbed environments. Factors such as ecological characteristics, altered soil conditions, and adaptations of native weed communities that potentially confer a competitive advantage relative to non-native or invasive weeds in disturbed environments are analysed. Moreover, the roles of biotic interactions such as competition, mutualistic relationships, and allelopathy in shaping the invasion resistance of native weed communities are described. Emphasis is given to the consideration of the resistance of native weeds as a key factor in invasion dynamics that provides insights for conservation and restoration efforts in disturbed environments. Additionally, this review underscores the need for further research to unravel the underlying mechanisms and to devise targeted management strategies. These strategies aim to promote the resistance of native weed communities and mitigate the negative effects of invasive weed species in disturbed environments. By delving deeper into these insights, we can gain an understanding of the ecological dynamics within disturbed ecosystems and develop valuable insights for the management of invasive species, and to restore long-term ecosystem sustainability.


Subject(s)
Introduced Species , Plant Weeds , Plant Weeds/physiology , Ecosystem , Weed Control/methods , Conservation of Natural Resources
10.
Front Plant Sci ; 14: 1238704, 2023.
Article in English | MEDLINE | ID: mdl-37745988

ABSTRACT

Aegilops tauschii (Coss.) is a highly deleterious, rapidly proliferating weed within the wheat, and its DD genome composition exhibits adaptability toward diverse abiotic stresses and demonstrates heightened efficacy in nutrient utilization. Current study investigated different variegated impacts of distinct nitrogen concentrations with varied plant densities, scrutinizing the behavior of Ae. tauschii under various salinity and drought stress levels through multiple physiological, biochemical, and molecular pathways. Different physiological parameters attaining high growth with different plant density and different nitrogen availability levels increased Ae. tauschii dominancy. Conversely, under the duress of salinity and drought, Ae. tauschii showcased an enhanced performance through a comprehensive array of physiological and biochemical parameters, including catalase, peroxidase, malondialdehyde, and proline content. Notably, salinity-associated traits such as sodium, potassium, and the sodium-potassium ratio exhibited significant variations and demonstrated remarkable tolerance capabilities. In the domain of molecular pathways, the HKT and DREB genes have displayed a remarkable upregulation, showcasing a comparatively elevated expression profile in reaction to different levels of salinity and drought-induced stress. Without a doubt, this information will make a substantial contribution to the understanding of the fundamental behavioral tendencies and the efficiency of nutrient utilization in Ae. tauschii. Moreover, it will offer innovative viewpoints for integrated management, thereby enabling the enhancement of strategies for adept control and alleviation.

11.
Small ; 19(41): e2302953, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37300361

ABSTRACT

Designing efficient and cost-effective electrocatalysts is the primary imperative for addressing the pivotal concerns confronting lithium-oxygen batteries (LOBs). The microstructure of the catalyst is one of the key factors that influence the catalytic performance. This study proceeds to the advantage of metal-organic frameworks (MOFs) derivatives by annealing manganese 1,2,3-triazolate (MET-2) at different temperatures to optimize Mn2 O3 crystals for special microstructures. It is found that at 350 °C annealing temperature, the derived Mn2 O3 nanocage maintains the structure of MOF, the inherited high porosity and large specific surface area provide more channels for Li+ and O2 diffusion, beside the oxygen vacancies on the surface of Mn2 O3 nanocages enhance the electrocatalytic activity. With the synergy of unique structure and rich oxygen vacancies, the Mn2 O3 nanocage exhibits ultrahigh discharge capacity (21 070.6 mAh g-1 at 500 mA g-1 ) and excellent cycling stability (180 cycles at the limited capacity of 600 mAh g-1 with a current of 500 mA g-1 ). This study demonstrates that the Mn2 O3 nanocage structure containing oxygen vacancies can significantly enhance catalytic performance for LOBs, which provide a simple method for structurally designed transition metal oxide electrocatalysts.

12.
Sci Total Environ ; 872: 162210, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36791863

ABSTRACT

Biochar (BC) is a sustainable and renewable carbonaceous material, and its soluble component, dissolved black carbon (DBC), is the key to understanding BC's geological and environmental processes. Although the relationship between the changes in DBC structure and its properties, functions, and associated environmental risks has been explored, a gap remains in our understanding of DBC's fate and behavior in the natural environment. Thus, in this review, we have highlighted the molecular and chemical compositions and the structural evolution of DBC during pyrolysis, the influence of DBC's physicochemical properties on its fate and transport, DBC's interaction with soil and its contaminants, and DBC stability in soil and water environments along with potential risks. Based on our in-depth assessment of DBC and its biogeochemical roles, we believe that future studies should focus on the following: (1) using advanced techniques to understand the chemical and molecular structure of DBC deeply and concisely and, thus, determine its fundamental role in the natural environment; (2) investigating the multi-functional properties of DBC and its interaction mechanisms; and (3) evaluating the environmental behaviors of and risks associated with DBC after BC application. In future, it is necessary to gain a deeper insight into the fate and transport of DBC with contaminants and study its associated risks under BC application in the environment.

13.
Funct Integr Genomics ; 23(1): 44, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36680630

ABSTRACT

Many emerging invasive weeds display rapid adaptation against different stressful environments compared to their natives. Rapid adaptation and dispersal habits helped invasive populations have strong diversity within the population compared to their natives. Advances in molecular marker techniques may lead to an in-depth understanding of the genetic diversity of invasive weeds. The use of molecular techniques is rapidly growing, and their implications in invasive weed studies are considered powerful tools for genome purposes. Here, we review different approach used multi-omics by invasive weed studies to understand the functional structural and genomic changes in these species under different environmental fluctuations, particularly, to check the accessibility of advance-sequencing techniques used by researchers in genome sequence projects. In this review-based study, we also examine the importance and efficiency of different molecular techniques in identifying and characterizing different genes, associated markers, proteins, metabolites, and key metabolic pathways in invasive and native weeds. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding invasive weeds traits. Although these techniques can provide robust insights about the molecular functioning, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. We conclude that different multi-omic techniques will provide long-term benefits in launching new genome projects to enhance the understanding of invasive weeds' invasion process.


Subject(s)
Genomics , Plant Weeds , Plant Weeds/genetics , Phenotype , Adaptation, Physiological
14.
Front Plant Sci ; 13: 1023723, 2022.
Article in English | MEDLINE | ID: mdl-36340357

ABSTRACT

This research focused on cadmium (Cd), which negatively affects plant growth and auxin hemostasis. In plants, many processes are indirectly controlled through the expression of certain genes due to the secretion of bacterial auxin, as indole-3-acetic acid (IAA) acts as a reciprocal signaling molecule in plant-microbe interaction. The aim of current studies was to investigate responsible genes in rice for plant-microbe interaction and lateral root development due to the involvement of several metabolic pathways. Studies revealed that GH3-2 interacts with endogenous IAA in a homeostasis manner without directly providing IAA. In rice, indole-3-pyruvate decarboxylase (IPDC) transgenic lines showed a 40% increase in lateral roots. Auxin levels and YUCCA (auxin biosynthesis gene) expression were monitored in osaux1 mutant lines inoculated with Bacillus cereus exposed to Cd. The results showed an increase in root hairs (RHs) and lateral root density, changes in auxin levels, and expression of the YUCCA gene. B. cereus normalizes the oxidative stress caused by Cd due to the accumulation of O 2 - and H2O2 in osaux1 mutant lines. Furthermore, the inoculation of B. cereus increases DR5:GUS expression, indicating that bacterial species have a positive role in auxin regulation. Thus, the current study suggests that B. cereus and IPDC transgenic lines increase the RH development in rice by interacting with IAA synthetase genes in the host plant, alleviating Cd toxicity and enhancing plant defense mechanisms.

15.
ACS Appl Mater Interfaces ; 14(22): 25802-25811, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35609239

ABSTRACT

Recently, rock-salt lead-free chalcogenide SnTe-based thermoelectric (TE) materials have been considered an alternative to PbTe because of the nontoxic properties of Sn as compared to Pb. However, high carrier concentration that originated from intrinsic Sn vacancies and relatively high thermal conductivity of pristine SnTe lead to poor TE efficiency, which makes room for improving its TE properties. In this study, we present that the Na incorporation into the SnTe matrix is helpful for modifying the electronic band structure, optimization of carrier concentration, introducing dislocations, and kink planes; benefiting from these synergistic effects obviates the disadvantages of SnTe and makes a significant improvement in TE performance. We reveal that Na favorably impacts the structure of electronic bands by valence, conduction band engineering, leading to a nice enhancement in the Seebeck coefficient, which exhibits the highest power factor value of 37.93 µWcm-1 K-2 at 898 K, representing the best result for the SnTe material system. Moreover, a broader phonon spectrum is introduced by new phonon-scattering centers, scattered by dislocations and kink planes which suppressed lattice thermal conductivity to 0.57 Wm-1 K-1 at 898 K, which is much lower than that of pristine SnTe. Ultimately, a maximum ZT of 1.26 at 898 K is achieved in the Sn1.03Te + 3% Na sample, which is 97% higher than that of the pristine SnTe, suggesting that SnTe-based materials are a robust candidate for TE applications specifically, an ideal alternative of lead chalcogenides for TE power generation at high temperatures.

16.
Front Plant Sci ; 13: 851099, 2022.
Article in English | MEDLINE | ID: mdl-35401616

ABSTRACT

Nitrogen (N) is one of the essential nutrients for plant growth. Appropriate application of N can improve the N use efficiency (NUE) and significantly promote plants' growth. However, under N toxic conditions, the relationship between the growth and antioxidant system of invasive plants under different N forms and competitive treatments is not fully understood. Therefore, in this study, the performance of invasive species Wedelia trilobata and its native species Wedelia chinensis was evaluated under two sets of N forms and ratios, namely, NH4 +-N(AN)/NO3 --N(NN) = 2:1 and NH4 +-N(AN)/NO3 --N(NN) = 1:2 along with two intraspecific and interspecific competitions under without N and high N level of 15 g N⋅m-2 year-1, respectively. Data regarding the growth indices, antioxidant enzyme activities, including peroxidase (POD) and catalase (CAT), malondialdehyde (MDA), and proline contents were determined. Results showed that for competitive treatments, growth status was better for interspecific competition than intraspecific competition. The plant biomass of W. trilobata was significantly higher than that of W. chinensis. N significantly promoted the plants' growth in terms of leaf area and biomass yield, and the antioxidant enzyme activities were significantly increased under a high N treatment than that of the control. Among N forms/ratios, ammonium N (AN)/nitrate N (NN) = 2:1 significantly enhanced the enzyme activity, particularly in W. trilobata. Furthermore, for intraspecific competition, MDA contents of W. trilobata were significantly decreased compared to that of W. chinensis. In conclusion, our results showed that W. trilobata adapted well under competitive conditions through better growth and antioxidant defense system.

17.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681677

ABSTRACT

Aegilops tauschii (Coss.) is an aggressive and serious annual grass weed in China. Its DD genome is a rich source of genetic material and performs better under different abiotic stress conditions (salinity, drought, temperature, etc.). Reverse-transcribed quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for reference gene selection and validation. This work aimed to evaluate the stability of reference gene expression in Ae. tauschii under different abiotic stresses (salinity, drought, hot, and cold) and developmental stages (seedling and development). The results show that the ubiquitin-conjugating enzyme E2 36-like (UBC36) and protein microrchidia 2-like (HSP) are the most stable genes under control and salinity conditions, respectively. Under drought stress conditions, UBC36 is more stable as compared with others. Glyceraldehyde-3-phosphate dehydrogenase (GADPH) is the most stable reference gene during heat stress conditions and thioredoxin-like protein (YLS) under cold stress condition. Phosphate2A serine/threonine-protein phosphatase 2A (PP2A) and eukaryotic translation initiation factor 3 (ETIF3) are the most stable genes at seedling and developmental stages. Intracellular transport protein (CAC) is recommended as the most stable gene under different abiotic stresses and at developmental stages. Furthermore, the relative expression levels of NHX1 and DREB under different levels of salinity and drought stress conditions varied with the most (HSP and UBC36) and least (YLS and ACT) stable genes. This study provides reliable reference genes for understanding the tolerance mechanisms in Ae. tauschii under different abiotic stress conditions.


Subject(s)
Aegilops/genetics , Gene Expression Regulation, Plant , Genes, Plant , Real-Time Polymerase Chain Reaction/standards , Stress, Physiological , Aegilops/physiology , Droughts , Reference Standards , Salinity , Temperature
18.
Plants (Basel) ; 10(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34371596

ABSTRACT

Aegilops tauschii Coss. (2n = 2x = 14, DD) is a problematic weed and a rich source of genetic material for wheat crop improvement programs. We used physiological traits (plant height, dry weight biomass, Na+ and K+ concentration) and 14 microsatellite markers to evaluate the genetic diversity and salinity tolerance in 40 Ae. tauschii populations. The molecular marker allied with salinity stress showed polymorphisms, and a cluster analysis divided the populations into different groups, which indicated diversity among populations. Results showed that the expression level of AeHKT1;4 and AeNHX1 were significantly induced during salinity stress treatments (50 and 200 mM), while AeHKT1;4 showed relative expression in roots, and AeNHX1 was expressed in leaves under the control conditions. Compared with the control conditions, the expression level of AeHKT1;4 significantly increased 1.7-fold under 50 mM salinity stress and 4.7-fold under 200 mM salinity stress in the roots of Ae. tauschii. AeNHX1 showed a relative expression level of 1.6-fold under 50 mM salinity stress and 4.6-fold under 200 mM salinity stress compared with the control conditions. The results provide strong evidence that, under salinity stress conditions, AeHKT1;4 and AeNHX1 synergistically regulate the Na+ homeostasis through regulating Na+ transport in Ae. tauschii. AeNHX1 sequestrated the Na+ into vacuoles, which control the regulation of Na+ transport from roots to leaves under salinity stress conditions in Ae. tauschii.

19.
Plants (Basel) ; 10(4)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921328

ABSTRACT

Seed priming with sorghum water extract (SWE) enhances crop tolerance to salinity stress; however, the application of SWE under salinity for camelina crop has not been documented so far. This study evaluated the potential role of seed priming with SWE in improving salt stress tolerance in camelina. Primed (with 5% SWE and distilled water-hydropriming) and nonprimed seeds were sown under control (no salt) and salt stress (10 dS m-1) conditions. Salinity reduced camelina's emergence and growth, while seed priming with SWE improved growth under control and stress conditions. Under salt stress, seed priming with SWE enhanced emergence percentage (96.98%), increased root length (82%), shoot length (32%), root dry weight (75%), shoot dry weight (33%), α-amylase activity (66.43%), chlorophyll content (60-92%), antioxidant enzymes activity (38-171%) and shoot K+ ion (60%) compared with nontreated plants. Similarly, under stress conditions, hydrogen peroxide, malondialdehyde (MDA) content, and shoot Na+ ion were reduced by 60, 31, and 40% by seed priming with SWE, respectively, over the nonprimed seeds. Therefore, seed priming with SWE may be used to enhance the tolerance against salt stress in camelina.

20.
Opt Express ; 28(21): 32077-32086, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115170

ABSTRACT

Hanbury Brown and Twiss (HBT) effect has broad applications in optics and other branches of physics, and traditionally this effect is considered in pure spatial or temporal domain. Here we investigate the spatiotemporal HBT effect, extending this phenomenon from spatial or temporal to spatiotemporal domain. By assuming the Gaussian statistics of partially coherent spatiotemporal pulsed sources, we find the generalized analytical results for spatiotemporal HBT effect in the compact form, with the help of the matrix-optics method, which can consider the HBT effect in spatial and temporal domain simultaneously. Furthermore, for Gaussian Schell-model pulsed beams (GSMPBs) used as a spatiotemporal correlated source, we have obtained the generalized expression to calculate spatiotemporal HBT effect, which is useful for up to three-dimensional cases in any second-order linear dispersive medium. By taking a simple two-dimensional case and using air as an example of a linear dispersive medium, we numerically illustrate the properties of the spatiotemporal HBT effect by adjusting the spatial and temporal parameters of the GSMPB source, and reveal the influence of both the spatial and temporal parameters on the spatiotemporal HBT effect. This work paves the path towards the detailed study of HBT effect for a source containing spatiotemporal information with Gaussian statistics.

SELECTION OF CITATIONS
SEARCH DETAIL
...