Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 3687598, 2022.
Article in English | MEDLINE | ID: mdl-35860635

ABSTRACT

A divorce is a legal step taken by married people to end their marriage. It occurs after a couple decides to no longer live together as husband and wife. Globally, the divorce rate has more than doubled from 1970 until 2008, with divorces per 1,000 married people rising from 2.6 to 5.5. Divorce occurs at a rate of 16.9 per 1,000 married women. According to the experts, over half of all marriages ends in divorce or separation in the United States. A novel ensemble learning technique based on advanced machine learning algorithms is proposed in this study. The support vector machine (SVM), passive aggressive classifier, and neural network (MLP) are applied in the context of divorce prediction. A question-based dataset is created by the field specialist. The responses to the questions provide important information about whether a marriage is likely to turn into divorce in the future. The cross-validation is applied in 5 folds, and the performance results of the evaluation metrics are examined. The accuracy score is 100%, and Receiver Operating Characteristic (ROC) curve accuracy score, recall score, the precision score, and the F1 accuracy score are close to 97% confidently. Our findings examined the key indicators for divorce and the factors that are most significant when predicting the divorce.


Subject(s)
Divorce , Support Vector Machine , Developed Countries , Female , Humans , Linear Models , Neural Networks, Computer , United States
2.
Plants (Basel) ; 10(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34961113

ABSTRACT

Plant health is the basis of agricultural development. Plant diseases are a major factor for crop losses in agriculture. Plant diseases are difficult to diagnose correctly, and the manual disease diagnosis process is time consuming. For this reason, it is highly desirable to automatically identify the diseases in strawberry plants to prevent loss of crop quality. Deep learning (DL) has recently gained popularity in image classification and identification due to its high accuracy and fast learning. In this research, deep learning models were used to identify the leaf scorch disease in strawberry plants. Four convolutional neural networks (SqueezeNet, EfficientNet-B3, VGG-16 and AlexNet) CNN models were trained and tested for the classification of healthy and leaf scorch disease infected plants. The performance accuracy of EfficientNet-B3 and VGG-16 was higher for the initial and severe stage of leaf scorch disease identification as compared to AlexNet and SqueezeNet. It was also observed that the severe disease (leaf scorch) stage was correctly classified more often than the initial stage of the disease. All the trained CNN models were integrated with a machine vision system for real-time image acquisition under two different lighting situations (natural and controlled) and identification of leaf scorch disease in strawberry plants. The field experiment results with controlled lightening arrangements, showed that the model EfficientNet-B3 achieved the highest classification accuracy, with 0.80 and 0.86 for initial and severe disease stages, respectively, in real-time. AlexNet achieved slightly lower validation accuracy (0.72, 0.79) in comparison with VGGNet and EfficientNet-B3. Experimental results stated that trained CNN models could be used in conjunction with variable rate agrochemical spraying systems, which will help farmers to reduce agrochemical use, crop input costs and environmental contamination.

SELECTION OF CITATIONS
SEARCH DETAIL
...