Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 24(6): 3713-3721, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35080551

ABSTRACT

The role of nanoparticle shape in the interaction and adsorption of organic molecules on the particle surface is an unexplored area. On the other hand, such knowledge is not only vital for a basic understanding of organic molecule interaction with nanoparticle surfaces but also essential for evaluating the cellular uptake of nanoparticles for living organisms. The current study investigates the role of silica nanoparticle shape in the interactions of phthalic acid organic molecules by using molecular dynamics simulations. Silica nanoparticles of two different geometries namely spheroid and cuboid with varying charge densities along with protonated and deprotonated phthalic acid molecules are studied. The adsorption characteristics of phthalic acid molecules on these nanoparticles have been analysed under different aquatic environments. The interactions of phthalic acid molecules, water molecules and ions were found to be different for spheroid and cubic shaped particles at pH values of 2-3, 7 and 9-10. The interaction of phthalic acid molecules with cubical silica nanoparticles is enhanced compared to the spherical shape particles. Such an enhanced interaction was seen when the silica surface is neutral, pH 2-3 and when the silica surface is charged at pH 7 and pH 9-10 in the presence of 0.5 M NaCl electrolyte. The cuboid-shaped silica also exhibited more hydrophilicity and less negative surface potential compared to spheroid shaped particles at pH 9-10. This is due to the enhanced condensation of Na+ counter-ions at the cuboid nanoparticle solution interface as to the interface of spheroid particles, which is well in agreement with Manning's theory of counter-ion condensation. Simulation results presented in this study indicate that the shape of the silica nanoparticle has significant influence on the interaction of water molecules, counter-ions and organic molecules which consequently determine the adsorption behaviour of organic molecules on the nanoparticle surface.


Subject(s)
Nanoparticles , Silicon Dioxide , Adsorption , Molecular Dynamics Simulation , Surface Properties
2.
Biosensors (Basel) ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34677320

ABSTRACT

Cytokines are a large group of small proteins secreted by immune and non-immune cells in response to external stimuli. Much attention has been given to the application of cytokines' detection in early disease diagnosis/monitoring and therapeutic response assessment. To date, a wide range of assays are available for cytokines detection. However, in specific applications, multiplexed or continuous measurements of cytokines with wearable biosensing devices are highly desirable. For such efforts, various nanomaterials have been extensively investigated due to their extraordinary properties, such as high surface area and controllable particle size and shape, which leads to their tunable optical emission, electrical, and magnetic properties. Different types of nanomaterials such as noble metal, metal oxide, and carbon nanoparticles have been explored for various biosensing applications. Advances in nanomaterial synthesis and device development have led to significant progress in pushing the limit of cytokine detection. This article reviews currently used methods for cytokines detection and new nanotechnology-based biosensors for ultrasensitive cytokine detection.


Subject(s)
Biosensing Techniques , Cytokines , Equipment Design , Humans , Magnetics , Nanostructures , Nanotechnology
3.
Dalton Trans ; 50(14): 4976-4985, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33877196

ABSTRACT

MOF-235(Fe) and MIL-101(Fe) are two well-studied metal-organic frameworks (MOFs) with dissimilar crystal structures and topologies. Previously reported syntheses of the former show that it has greatly varying surface areas, indicating a lack of phase purity of the products, i.e. the possible presence of both MOFs in the same sample. To find the reason for this, we have tested and modified the commonly used synthesis protocol of MOF-235(Fe), where a 3 : 5 molar ratio of iron(iii) ions and a terephthalic acid linker is heated in a 1 : 1 DMF : ethanol solvent at 80 °C for 24 h. Using XRD and BET surface area (SABET) measurements, we found that it is difficult to obtain a pure phase of MOF-235, as MIL-101 also appears to form during the solvothermal treatment. Comparison of the XRD peak height ratios of the synthesis products revealed a direct correlation between the MOF-235/MIL-101 content and surface area; more MOF-235 yields a lower surface area and vice versa. In general, using a larger (3 : 1) DMF : ethanol ratio than that reported in the literature and a stoichiometric (4 : 3) Fe(iii) : TPA ratio yields a nearly pure MOF-235 product (SABET = 295 m2 g-1, 67% yield). An optimized synthesis procedure was developed to obtain high-surface area MIL-101(Fe) (SABET > 2400 m2 g-1) in a large yield and at a previously unreported temperature (80 °C vs. previously used 110-150 °C). In situ X-ray scattering was utilized to investigate the crystallization of MOF-235 and MIL-101. At 80 °C, only MOF-235 formed and at 85 and 90 °C, only MIL-101 formed.

4.
ACS Omega ; 4(1): 1151-1156, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459391

ABSTRACT

With the rapid development of nanotechnology, there is urgent need of characterizing techniques; especially determining the particle size distribution directly from solution. Dynamic light scattering is often used but presence of a small number of aggregates can greatly influence the size distribution. Electrospray scanning mobility particle sizer (ES-SMPS) is rapidly emerging as an alternative method in colloidal science. However, a major limitation is the use of silica-coated capillaries, which are negatively charged at pH > 3, and therefore making its use difficult for positively charged nanoparticles. In this work, we have developed the polyether ether ketone (PEEK) capillary for ES-SMPS, which removes this limitation because it carries no charge. We have shown that the new capillary not only produced equally good particle size distributions for negatively charged particles (SiO2, Au, and latex) as obtained with silica capillaries, but also precise particle size distributions for positively charged particles (TiO2). Moreover, the PEEK capillaries are much cheaper than the silica capillaries. Thus, the results shown in this paper strengthen the development of the ES-SMPS method as a versatile method for determining the particle size distributions of colloidal sols directly from solution.

5.
Nano Converg ; 5(1): 6, 2018.
Article in English | MEDLINE | ID: mdl-29503794

ABSTRACT

At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.

6.
Angew Chem Int Ed Engl ; 55(11): 3790-4, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26880184

ABSTRACT

The chemistry and physics of charged interfaces is regulated by the structure of the electrical double layer (EDL). Herein we quantify the average thickness of the Stern layer at the silica (SiO2 ) nanoparticle/aqueous electrolyte interface as a function of NaCl concentration following direct measurement of the nanoparticles' surface potential by X-ray photoelectron spectroscopy (XPS). We find the Stern layer compresses (becomes thinner) as the electrolyte concentration is increased. This finding provides a simple and intuitive picture of the EDL that explains the concurrent increase in surface charge density, but decrease in surface and zeta potentials, as the electrolyte concentration is increased.

7.
Nano Lett ; 13(11): 5403-7, 2013.
Article in English | MEDLINE | ID: mdl-24124920

ABSTRACT

We show that the surface potential at a water-oxide nanoparticle (NP) interface, long considered an immeasurable direct quantity, can be measured by X-ray photoelectron spectroscopy (XPS) from a liquid microjet. This new method does not require a priori knowledge of the particles' surface structure or of the ion distribution throughout the electrical double layer for its interpretation and can be applied to any colloidal suspension independent of composition, particle size and shape, and solvent. We demonstrate the application for aqueous suspensions of 9 nm colloidal silica (SiO2) at pH 0.3 and 10.0, where the surface potential changes from positive to negative. The experimental results are compared with calculated surface potentials based on Guoy-Chapman theory and are shown to be in good agreement.

8.
J Colloid Interface Sci ; 407: 168-76, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23859811

ABSTRACT

Size dependent surface charging and interfacial potential of titanium dioxide (TiO2) nanoparticles are investigated by experimental and theoretical methods. Commercially available TiO2 (P25) nanoparticles were used for surface charge determinations by potentiometric titrations. Anatase particles, 10 and 22 nm in diameter, were synthesized by controlled hydrolysis of TiCl4, and electrophoretic mobilities were determined at a fixed pH but at increasing salt concentrations. Corrected Debye-Hückel theory of surface complexation (CDH-SC) was modified to model the size dependent surface charging behavior of TiO2 nanoparticles. Experimentally determined surface charge densities of rutile and P25 nanoparticles in different electrolytes were accurately modeled by the CDH-SC theory. Stern layer capacitances calculated by the CDH-SC theory were in good agreement with the values found by the classical surface complexation approach, and the interaction of protons with OH groups is found to be less exothermic than for iron oxide surfaces. Moreover, the CDH-SC theory predicts that the surface charge density of TiO2 nanoparticles of diameter <10nm is considerably higher than for larger particles, and pH at the point of zero charge (pHPZC) shifts to higher pH values as the particle size decreases. The importance of including the particle size in calculating the zeta potentials from mobilities is demonstrated. Smoluchowski theory showed that 10nm particles had lower zeta potential than 22 nm particles, whereas a reverse trend was seen when zeta potentials were calculated by Ohshima's theory in which particle size is included. Electrokinetic charge densities calculated from zeta potentials were found to be only one third of the true surface charge densities.


Subject(s)
Metal Nanoparticles/chemistry , Models, Theoretical , Titanium/chemistry , Colloids/chemistry , Hydrogen-Ion Concentration , Potentiometry , Surface Properties
9.
Langmuir ; 29(16): 5023-9, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23534618

ABSTRACT

Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.

10.
J Phys Chem B ; 115(31): 9547-55, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21774495

ABSTRACT

The effect of ion specificity on the slow aggregation of silica nanoparticles with various initial morphology was investigated with an electrospray-scanning mobility particle sizer (ES-SMPS) and time-resolved synchrotron radiation-small-angle X-ray scattering (SR-SAXS). This combination provides a unique tool to monitor and resolve the early aggregate development in detail. Aggregation was induced by varying the K(2)CO(3) or KCl concentration to obtain a fixed gelation time of ∼40 min, and the results were compared with those obtained in a previous paper (Johnsson et al. J. Phys. Chem. B 2011, 115, 765-775) for NaCl. All dispersions produced gels that contained free primary particles well past the point of gelation (PoG). The initial aggregate formation and obtained gel morphologies were independent of the aggregation initiator. Nevertheless, ion-specific effects were observed for the rate of the stability increase of the 3-dimensional (3D) gel structure. The formation of a stable structure was fastest in the presence of the strongly hydrated counterions, and a clear anion effect was observed. The obtained gel stabilities were interpreted by relating the rate of formation of covalent siloxane bonds to the polarization of the water molecules surrounding structure-maker ions.

11.
J Phys Chem B ; 115(5): 765-75, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21210668

ABSTRACT

The slow aggregation of monodisperse, polydisperse, and preaggregated silica nanoparticles was studied with an electrospray-scanning mobility particle sizer (ES-SMPS) and time-resolved synchrotron radiation-small-angle X-ray scattering (SR-SAXS). Aggregation was induced by varying the NaCl concentration to obtain a fixed gelation time of ∼40 min. The combination of these techniques provides a unique tool to monitor and resolve the aggregate development in detail. The monodisperse spherical particles were converted to dimers, trimers, and eventually larger clusters as the aggregation proceeded, while the polydisperse spherical particles formed large clusters at an early stage. The initial particle shape and polydispersity had profound effects on the morphology of the aggregates; spherical primary particles produced compact spherical clusters, whereas the preaggregated dispersions formed open, elongated aggregates. All dispersions produced gels that contained free primary particles well past the point of gelation. The stability of the aggregates and the gel morphology were interpreted by relating to the structure of porous gel layers around the particles.

12.
J Phys Chem B ; 113(17): 5905-16, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-19341250

ABSTRACT

An extensive series of Monte Carlo (MC) simulations were performed in order to explore the validity of simple primitive models of electrolyte solutions and in particular the effect of ion size asymmetry on the bulk thermodynamic properties of real salt solutions. Ionic activity and osmotic coefficients were calculated for 1:1, 2:1, and 3:1 electrolytes by using the unrestricted primitive model (UPM); i.e., ions are considered as charged hard spheres of different sizes dissolved in a dielectric continuum. Mean ionic activity and osmotic coefficients calculated by the MC simulations were fitted simultaneously to the experimental data by adjusting only the cation radius while keeping the anion radius fixed at its crystallographic value. Ionic radii were further optimized by systematically varying the cation and anion radii at a fixed sum of ionic radii. The success of this approach is found to be highly salt specific. For example, experimental data (mean ionic activity and osmotic coefficients) of salts which are usually considered as dissociated such as HCl, HBr, LiCl, LiBr, LiClO(4), and KOH were successfully fitted up to 1.9, 2.5, 1.9, 3, 2.5, and 4.5 M concentrations, respectively. In the case of partially dissociated salts such as NaCl, the successful fits were only obtained in a more restricted concentration range. Consistent sets of the best fitted cation radii were obtained for acids, alkali, and alkaline earth halides. A list of recommended ionic radii is also provided. The reliability of the optimized ionic radii was further tested in simulations of the osmotic coefficients of LiCl-NaCl-KCl salt mixtures. A very good agreement between the simulated and experimental data was obtained up to ionic strength of 4.5 M.


Subject(s)
Computer Simulation , Lithium Chloride/chemistry , Models, Chemical , Monte Carlo Method , Potassium Chloride/chemistry , Sodium Chloride/chemistry , Electrolytes/chemistry , Salts/chemistry , Solutions , Thermodynamics
13.
Langmuir ; 24(22): 12798-806, 2008 Nov 18.
Article in English | MEDLINE | ID: mdl-18850727

ABSTRACT

The slow aggregation process of a concentrated silica dispersion (Bindzil 40/220) in the presence of alkali chlorides (LiCl, NaCl, KCl, RbCl, and CsCl) was investigated by means of mobility measurements. At intervals during the aggregation, particles and aggregates were transferred from the liquid phase to the gas phase via electrospray (ES) and subsequently size selected and counted using a scanning mobility particle sizer (SMPS). This method enables the acquisition of particle and aggregate size distributions with a time resolution of minutes. To our knowledge, this is the first time that the method has been applied to study the process of colloidal aggregation. The obtained results indicate that, independent of the type of counterion, a sufficient dilution of the formed gel will cause the particles to redisperse. Hence, the silica particles are, at least initially, reversibly aggregated. The reversibility of the aggregation indicates additional non-DLVO repulsive steric interactions that are likely due to the presence of a gel layer at the surface. The size of the disintegrating aggregates was monitored as a function of the time after dilution. It was found that the most stable aggregates were formed by the ions that adsorb most strongly on the particle surface. This attractive effect was ascribed to an ion-ion correlation interaction.

14.
J Colloid Interface Sci ; 274(2): 563-78, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15144831

ABSTRACT

Statistical mechanics has been used to derive a model for the charging of a spherical particle in a salt solution to complement our experimental studies and gain a deeper understanding of the processes involved in surface complexation. Our chosen model goes beyond the equilibrium constants and the Gouy-Chapmann theory currently used in surface complexation models. The proton adsorption is taken to occur at a harmonic potential well on the surface characterized by a frequency v and a well depth u(0). Outside the particle surface there is a capacitor layer of width w(c) which is impenetrable to the salt ions. The diffuse screening of the charged particle is described by a corrected Debye-Hückel analysis accounting for ion size in the ion-ion interactions. To account also for nonlinear electrostatic response a layer of condensed counterions has been introduced. The criterion for the onset of ion condensation is that the electrostatic field exceeds a linear response criterion. Ion size effects are accounted for in terms of hole-corrected electrostatic energies and excluded volume. The model has been applied to titrated surface charge data on goethite (alpha-FeOOH) at various background concentrations and good agreement between the experimental data and the model was obtained. Both the size of the screening ions and the central particle size were shown to be of importance for the surface charge.

15.
Waste Manag ; 23(4): 291-305, 2003.
Article in English | MEDLINE | ID: mdl-12781217

ABSTRACT

Residues from fluidized bed combustion of municipal solid waste were investigated with respect to their leaching behavior and possible extraction of salts. The total water extractable amounts of Na, K, Ca, Cl(-), Br(-), F(-) and SO(4)(2-) along with the total dissolved solids of bottom, hopper, cyclone and bag house filter ashes were determined. A simple multistage washing process (using water as the extraction medium) was tested in lab scale experiments. The effect of variations in parameters, such as water to ash weight ratio, contact time, temperature and number of extraction steps was investigated. The leaching behavior of untreated and washed cyclone and bag house filter ashes was evaluated by a two-step batch-leaching test, i.e. the CEN test. The ashes investigated in this study can be arranged according to their decreasing water extractable contents and total dissolved solids as follows: filter ash > cyclone ash > hopper ash > bottom ash. A triple extraction with water at liquid to solid ratio 2 and extraction time 5 min gave the best results for the extraction of Ca, Na, K, Cl(-) and SO(4)(2-) from the cyclone as well as from the filter ashes. The leached amounts of salts in the CEN test performed on the washed cyclone ash were considerably lower than the corresponding amounts released from the unwashed ash. Thus, the washed cyclone ash was made more stable with respect to salt leachability. On the other hand, large amounts of salts were leached from the washed filter ashes as well as from unwashed filter ashes. Therefore, it can be concluded that three stage water extraction is not a suitable stabilization method for this type of filter ashes.


Subject(s)
Environmental Monitoring , Refuse Disposal , Salts/analysis , Incineration
16.
J Colloid Interface Sci ; 249(1): 52-61, 2002 May 01.
Article in English | MEDLINE | ID: mdl-16290568

ABSTRACT

A theory of surface charging of colloidal particles suspended in an electrolyte solution is presented. The charging at the particle surface is assumed to originate from the adsorption and desorption of protons and is therefore strongly dependent on the acidity of the solution. The surface binding of protons occurs locally at sites of occupancy zero or one that are described by a binding energy u(0) and a three-dimensional vibration of frequency nu. The diffuse screening of ions at the surface is described by the corrected Debye-Hückel analysis assuming linear response. The model contains a capacitor layer close to the charged surface and the finite size of the electrolyte ions is taken into account. The theory has been applied to titrated surface charge data on goethite (alpha-FeOOH) at NaClO(4) background concentrations ranging from 0.01 to 1.0 M. The protonation mechanism used in the modeling of these data corresponds to the 1-pK approach. A very good description of the experimental data was obtained at the highest ionic strength. Close to the pH(pzc) the theory also gave a good description at lower ionic strengths. However, at low salt concentrations and pH values far away from the pH(pzc) the electrostatic potential outside the capacitor layer becomes so high that nonlinear electrostatic effects become important and the theory therefore underestimates the surface charge. These results were compared with model calculations obtained using existing surface complexation models.

SELECTION OF CITATIONS
SEARCH DETAIL
...