Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 9(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33203059

ABSTRACT

Heavy metal stress is a leading environmental issue reducing crop growth and productivity, particularly in arid and semi-arid agro-ecological zones. Cadmium (Cd), a non-redox heavy metal, can indirectly increase the production of reactive oxygen species (ROS), inducing cell death. A pot experiment was conducted to investigate the effects of different concentrations of Cd (0, 5, 25, 50, 100 µM) on physiological and biochemical parameters in two sorghum (Sorghum bicolor L.) cultivars: JS-2002 and Chakwal Sorghum. The results showed that various concentrations of Cd significantly increased the Cd uptake in both cultivars; however, the uptake was higher in JS-2002 compared to Chakwal Sorghum in leaf, stem and root. Regardless of the cultivars, there was a higher accumulation of the Cd in roots than in shoots. The Cd stress significantly reduced the growth and increased the electrolyte leakage (EL), hydrogen peroxide (H2O2) concentration and malondialdehyde (MDA) content in both cultivars, but the Chakwal Sorghum showed more pronounced oxidative damage than the JS-2002, as reflected by higher H2O2, MDA and EL. Moreover, Cd stress, particularly 50 µM and 100 µM, decreased the activity of different antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the JS-2002 exhibited higher SOD, POD and CAT activities than the Chakwal Sorghum under different Cd-levels. These findings revealed that JS-2002 had a stronger Cd enrichment capacity and also exhibited a better tolerance to Cd stress due to its efficient antioxidant defense system than Chakwal Sorghum. The present study provides the available information about Cd enrichment and tolerance in S. bicolor, which is used as an important agricultural crop for livestock feed in arid and semi-arid regions.

2.
Plants (Basel) ; 9(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272796

ABSTRACT

Salinity is a major abiotic stress which limits crop production, especially under rainfed conditions. Selenium (Se), as an important micronutrient, plays a vital role in mitigating detrimental effects of different abiotic stresses. The objective of this research was to examine the effect of Se fertilization on black gram (Vigna mungo) under salt stress. Our results showed that salt stress (100 mM NaCl) in leaves significantly induced oxidative damage and caused a decline in relative water content, chlorophyll (Chl), stomatal conductance (gs), photochemical efficiency (Fv/Fm), sucrose, and reducing sugars. A low dose of Se (1.5 ppm) significantly reduced hydrogen peroxide content, malondialdehyde formation, cell membrane damage, and also improved antioxidative enzyme activities, including superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and glutathione peroxidase under salt stress. Se-treated plants exhibited higher Chl, gs, Fv/Fm, sucrose, and reducing sugars than untreated plants in response to salt stress. In addition, Se application enhanced Se uptake and reduced Na+ uptake, but Cl- remained unaffected. Our results indicated that a low dose of Se effectively alleviated salt damage via inhibition of Na+ uptake and enhanced antioxidant defense resulting in a significant decrease in oxidative damage, and maintained gaseous exchange and PS II function for sucrose and reducing sugars accumulation in black gram.

SELECTION OF CITATIONS
SEARCH DETAIL
...