Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2404384, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943469

ABSTRACT

Films and patterns of 3D-oriented metal-organic frameworks (MOFs) afford well-ordered pore structures extending across centimeter-scale areas. These macroscopic domains of aligned pores are pivotal to enhance diffusion along specific pathways and orient functional guests. The anisotropic properties emerging from this alignment are beneficial for applications in ion conductivity and photonics. However, the structure of 3D-oriented MOF films and patterns can rapidly degrade under humid and acidic conditions. Thus, more durable 3D-ordered porous systems are desired for practical applications. Here, oriented porous polymer films and patterns are prepared by using heteroepitaxially oriented N3-functionalized MOF films as precursor materials. The film fabrication protocol utilizes an azide-alkyne cycloaddition on the Cu2(AzBPDC)2DABCO MOF. The micropatterning protocol exploits the X-ray sensitivity of azide groups in Cu2(AzBPDC)2DABCO, enabling selective degradation in the irradiated areas. The masked regions of the MOF film retain their N3-functionality, allowing for subsequent cross-linking through azide-alkyne coupling. Subsequent acidic treatment removes the Cu ions from the MOF, yielding porous polymer micro-patterns. The polymer has high chemical stability and shows an anisotropic fluorescent response. The use of 3D-oriented MOF systems as precursors for the fabrication of oriented porous polymers will facilitate the progress of optical components for photonic applications.

2.
Polymers (Basel) ; 14(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35808756

ABSTRACT

A mode-mismatched thermal lens spectrometry (TLS) technique, in a pump-probe two-laser-beam configuration, was employed for the experimental determination of the thermal properties of four selected well-characterized polyolefin homopolymer films. We investigated the thermal diffusivity (D) and thermal conductivity (κ) of high-density polyethylene, low-density polyethylene, linear low-density polyethylene, and polypropylene. We also measured the structural properties (i.e., average molecular weight, polydispersity index, branching number), along with the rheological and thermal properties (i.e., melting point, specific heat capacity Cp, degree of crystallinity) of samples by high-temperature gel permeation chromatography (HT-GPC), rheometric mechanical spectrometry (RMS), differential scanning calorimetry (DSC), and densitometry. The relationship between microstructural properties such as degree of crystallinity, D, and κ was investigated. The results show that there is good correlation between the degree of crystallinity and D. The TL technique enables measurement of D in semitransparent thin films within an uncertainty of 4%.

3.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36615988

ABSTRACT

Herein, we report on a smart biosensing platform that exploits gold nanoparticles (AuNPs) functionalized through ssDNA self-assembled monolayers (SAM) and the DNA-directed immobilization (DDI) of DNA-protein conjugates; a novel, high-sensitivity optical characterization technique based on a miniaturized gel electrophoresis chip integrated with online thermal lens spectrometry (MGEC-TLS), for the high-sensitivity detection of antigen binding events. Specifically, we characterized the physicochemical properties of 20 nm AuNPs covered with mixed SAMs of thiolated single-stranded DNA and bio-repellent molecules, referred to as top-terminated oligo-ethylene glycol (TOEG6), demonstrating high colloidal stability, optimal binder surface density, and proper hybridization capacity. Further, to explore the design in the frame of cancer-associated antigen detection, complementary ssDNA fragments conjugated with a nanobody, called C8, were loaded on the particles and employed to detect the presence of the HER2-ECD antigen in liquid. At variance with conventional surface plasmon resonance detection, MGEC-TLS characterization confirmed the capability of the assay to titrate the HER2-ECD antigen down to concentrations of 440 ng/mL. The high versatility of the directed protein-DNA conjugates immobilization through DNA hybridization on plasmonic scaffolds and coupled with the high sensitivity of the MGEC-TLS detection qualifies the proposed assay as a potential, easily operated biosensing strategy for the fast and label-free detection of disease-relevant antigens.

SELECTION OF CITATIONS
SEARCH DETAIL
...