Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Mol Neurobiol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890237

ABSTRACT

Multiple sclerosis (MS) is a neurodegenerative disease characterized by the demyelination of nerves, axonal damage, and neuroinflammation. Cognition impairment, pain, and loss of mobility are some of the usual complications of MS. It has been postulated that the overproduction of proinflammatory cytokines and reactive oxygen species (ROS) are the main factors that contribute to MS pathology. Among various animal models, the cuprizone model is the most widely used model for investigating MS-related pathology. We assessed the effects of cuprizone along with the protective effects of some black seed oil-based nanoformulations of curcumin with and without piperine, in mice hippocampus in terms of the changes in antioxidant enzymes, transcription factors, and cytokines during demyelination and remyelination processes. The results of behavioral studies point toward impairment in working memory following the feeding of cuprizone for 5 weeks. However, in treatment groups, mice seemed to prevent the toxic effects of cuprizone. Nanoformulations used in this study were found to be highly effective in lowering the amount of ROS as indicated by the levels of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione peroxidase. Moreover, nanoformulations CCF and CCPF were observed resisting the toxic effects of cuprizone. We observed greater expression of NFκB-p65 in the CPZ group than in the control group. CCF nanoformulation had a better inhibitory effect on NFκB-p65 than other formulations. Histological examination of the hippocampus was also conducted. Nanoformulations used here were found effective in reversing MS-related pathophysiology and hence have the potential to be applied as adjuvant therapy for MS treatment.

2.
Curr Med Chem ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38939996

ABSTRACT

BACKGROUND: Methamphetamine (MA) is well recognized as a psychostimulant that can cause neurotoxicity and neurodegeneration, which is associated with cognitive decline, has been confirmed experimentally. OBJECTIVE: The research aimed to investigate the neuroprotective properties of europinidin (Eu) in rodents affected by methamphetamine (MA)-induced cognitive impairments and hippocampal alterations. This was achieved by inhibiting lipid peroxidation and pro-inflammatory markers. METHODS: Rats were exposed to cognitive impairment produced by MA. The Morris water maze (MWM) is utilized for evaluating behavioral parameters. Tests were conducted on malondialdehyde (MDA), catalase (CAT), interleukins-1ß (IL-1ß), reduced glutathione (GSH), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), and the expression of neurotransmitters (Norepinephrine [NE], dopamine [DA], glutamate, and gamma-aminobutyric acid [GABA]) as well as cAMP response element-binding protein (CREB), IL-6, brain-derived neurotrophic factor (BDNF), and caspase 3 proteins. An investigation was carried out using docking methodology to ascertain whether Eu interacts with relevant molecular targets. RESULTS: Significant decline in the transfer latency and there were significant changes in the amount of SOD, GSH, CAT, and MDA and alterations in levels of IL-6, IL-1ß, CREB, TNF-α, BDNF, and Caspase 3 proteins expression, as well as considerably alterations in level of neurotransmitters (NE, DA, Glutamate, and GABA) were observed in the Eu-treated rats compared to the MA-induced rats. Eu had a favorable affinity towards BDNF with docking scores of -9.486 kcal/mol. CONCLUSION: The experiment found that administering Eu to rats improved cognitive abilities by changing antioxidant enzymes, reducing cytokines, and modifying neurotransmitter levels, compared to rats in the control group treated with MA.

3.
Curr Pharm Des ; 30(14): 1115-1127, 2024.
Article in English | MEDLINE | ID: mdl-38561612

ABSTRACT

BACKGROUND: Cardiovascular diseases (CVDs) continue to exert a substantial global influence in specific areas due to population growth, aging, microbiota, and genetic/environmental factors. Drinking water has a strong impact on the health of an individual. Further, emerging evidence has highlighted the therapeutic potential and benefits of Zamzam water (Zam). OBJECTIVE: We investigated the influence of Zam on doxorubicin-induced cardiac toxicity, elucidating its consequential effects on GUT microbiota dysbiosis and hepatic and renal functions. METHODS: Male rats were categorized into four groups: Group 1 as Normal control (NC), Group 2 as Zamzam control (ZC), Group 3 Disease control (DC) and Group 4 as Therapeutic control (DZ) treated with Zam against doxorubicin-induced disease at a dose of 1mg/kg boy weight) intraperitoneally (i.p). RESULTS: Significant dysbiosis in the composition of GM was observed in the DC group along with a significant decrease (p < 0.05) in serum levels of Zinc, interleukin-10 (IL-10), IL-6 and Angiotensin II (Ang II), while C-reactive protein (CRP), fibrinogen, and CKMB increased significantly (restoration of Zinc ions (0.72 ± 0.07 mcg/mL) compared to NC. Treatment with Zamzam exhibited a marked abundance of 18-times to 72% in Romboutsia, a genus of firmicutes, along with lowering of Proteobacteria in DZ followed by significant restoration of Zinc ions (0.72 ± 0.07 mcg/mL), significant (p ˂ 0.05) reduction in CRP (7.22 ± 0.39 mg/dL), CKMB (118.8 ± 1.02 U/L) and Fibrinogen (3.18 ± 0.16 mg/dL), significant (p < 0.05) increase in IL-10 (7.22 ± 0.84 pg/mL) and IL-6 (7.18 ± 0.40 pg/ml), restoration of Ang II (18.62 ± 0.50 nmol/mL/min), marked increase in renin with normal myocyte architecture and tissue orientation of kidney, and restoration of histological architecture of hepatocyte. CONCLUSION: Zam treatment mitigated cardiac toxicity risk through the modulation of GUT microbiota and the renin-angiotensin system and tissue histology effectively.


Subject(s)
Gastrointestinal Microbiome , Renin-Angiotensin System , Animals , Gastrointestinal Microbiome/drug effects , Male , Rats , Renin-Angiotensin System/drug effects , Doxorubicin/pharmacology , Water/chemistry
5.
PeerJ ; 12: e16795, 2024.
Article in English | MEDLINE | ID: mdl-38313003

ABSTRACT

This study explores the neuroprotective potential of hibiscetin concerning memory deficits induced by lipopolysaccharide (LPS) injection in rats. The aim of this study is to evaluate the effect of hibiscetin against LPS-injected memory deficits in rats. The behavioral paradigms were conducted to access LPS-induced memory deficits. Various biochemical parameters such as acetyl-cholinesterase activity, choline-acetyltransferase, antioxidant (superoxide dismutase, glutathione transferase, catalase), oxidative stress (malonaldehyde), and nitric oxide levels were examined. Furthermore, neuroinflammatory parameters such as tumor necrosis factor-α, interleukin-1ß (IL-1ß), IL-6, and nuclear factor-kappa B expression and brain-derived neurotrophic factor as well as apoptosis marker i.e., caspase-3 were evaluated. The results demonstrated that the hibiscetin-treated group exhibited significant recovery in LPS-induced memory deficits in rats by using behavioral paradigms, biochemical parameters, antioxidant levels, oxidative stress, neuroinflammatory markers, and apoptosis markers. Recent research suggested that hibiscetin may serve as a promising neuroprotective agent in experimental animals and could offer an alternative in LPS-injected memory deficits in rodent models.


Subject(s)
Biological Products , Memory Disorders , NF-kappa B , Animals , Rats , Antioxidants/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Caspase 3/metabolism , Lipopolysaccharides/toxicity , Memory Disorders/chemically induced , Memory Disorders/drug therapy , NF-kappa B/metabolism , Biological Products/pharmacology
6.
Article in English | MEDLINE | ID: mdl-38310448

ABSTRACT

Drug repurposing is an ongoing and clever strategy that is being developed to eradicate tuberculosis amid challenges, of which one of the major challenges is the resistance developed towards antibiotics used in standard directly observed treatment, short-course regimen. Surpassing the challenges in developing anti-tuberculous drugs, some novel host-directed therapies, repurposed drugs, and drugs with novel targets are being studied, and few are being approved too. After almost 4 decades since the approval of rifampicin as a potent drug for drugsusceptible tuberculosis, the first drug to be approved for drug-resistant tuberculosis is bedaquiline. Ever since the urge to drug discovery has been at a brisk as this milestone in tuberculosis treatment has provoked the hunt for novel targets in tuberculosis. Host-directed therapy and repurposed drugs are in trend as their pharmacological and toxicological properties have already been researched for some other diseases making the trial facile. This review discusses the remonstrance faced by researchers in developing a drug candidate with a novel target, the furtherance in tuberculosis research, novel anti-tuberculosis agents approved so far, and candidates on trial including the host-directed therapy, repurposed drug and drug combinations that may prove to be potential in treating tuberculosis soon, aiming to augment the awareness in this context to the imminent researchers.

7.
Curr Diabetes Rev ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38415496

ABSTRACT

BACKGROUND: Much increasing evidence has suggested that long-term complications post vaccination of SARS-CoV-2 experience a wide range of complication including diabetes. The risk and burden of type 1 diabetes is extensively reported, but type 2 diabetes mellitus (T2D) has yet to be characterized. To address this gap, we aimed to examine trends of long-term complications post SARS-CoV-2 infection and vaccination in diabetes incidence among the Saudi population. METHODS: In this cross-sectional hospital-based study, we analyzed the blood profile of first-time blood donors from the University Hospital of King Abdulaziz University, Jeddah. Saudi Arabia. Various blood parameters, HbA1c was measured in the month of May 2023. All the donors were non-diabetic and were never diagnosed with T2D before the current blood donation. 203 healthy subjects donated their blood, out of which 104 had abnormally high HbA1c tending towards diagnosis of T2D and 99 had with blood profiles. The study followed the STROBE reporting guidelines. RESULTS: Out of 203 donors 104 (male 50(48.1%), female 54(51.9%)) were diagnosed with increased HbA1c (8.24 in males) compared to 7.61 of HbA1c in females. 35.6% were above ˃65 years, with 52.9% with O+ from the ABO blood group. Liver functions indicated significant p˂0.05, 0.04, increased amount of GGT (46.47 U/L), Alkaline phosphatase (99.93 ±64.26 uL) respectively in HbA1c elevated donors KFT represented significant p˂0.05, 0.02 elevated levels of urea (6.73 ±5.51 mmol/L), creatinine (129.97 ±195.17 umol/L) respectively along with elevated values of Lactate dehydrogenase (LDH) (263.72± 196.70 uL) and triglycerides (1.66 ±0.74mmol/L) when compared to normal value of HbA1c donors. DISCUSSION: In the present cross-sectional study, significant increase in HbA1c, trending towards increased cases of T2D post SARS-CoV-2 infection and vaccination. Males are much affected compared to females. Further maximum number of cases were from donors above the age of 65 years with altered partial LFT (GGT, Alkaline phosphatase), KFT (urea, creatinine), lipid profile (TG) and LDH in post SARS-CoV-2 and vaccination blood donors. CONCLUSION: Increase in HbA1c in 50% of donors, irrespective of gender, is an alarming figure for health authorities, with altered LFT, KFT and LDH tests and, in the near future, may increase the incidence of T2D. Large-scale population-based studies are required to prevent future incidences of T2D in young children who will be vaccinated.

8.
Pathol Res Pract ; 254: 155134, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38277746

ABSTRACT

Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/ß-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/ß-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/ß-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/ß-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/ß-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/ß-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/ß-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.


Subject(s)
MicroRNAs , Prostatic Neoplasms , RNA, Long Noncoding , Male , Humans , Wnt Signaling Pathway/genetics , beta Catenin/metabolism , RNA, Long Noncoding/genetics , RNA, Circular/genetics , Prostatic Neoplasms/pathology , MicroRNAs/genetics
9.
Molecules ; 29(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257347

ABSTRACT

Breast cancer (BC) is one of the most common cancers in women and is a major cause of female cancer-related deaths. BC is a multifactorial disease caused by the dysregulation of many genes, raising the need to find novel drugs that function by targeting several signaling pathways. The antitumoral drug thymoquinone (TQ), found in black seed oil, has multitargeting properties against several signaling pathways. This study evaluated the inhibitory effects of TQ on the MCF7 and T47D human breast cancer cell lines and its antitumor activity against BC induced by a single oral dose (65 mg/kg) of 7,12-dimethylbenzanthracene (DMBA) in female rats. The therapeutic activity was evaluated in DMBA-treated rats who received oral TQ (50 mg/kg) three times weekly. TQ-treated MCF7 and T47D cells showed concentration-dependent inhibition of cell proliferation and induction of apoptosis. TQ also decreased the expression of DNA methyltransferase 1 (DNMT1) in both cancer cell types. In DMBA-treated animals, TQ inhibited the number of liver and kidney metastases. These effects were associated with a reduction in DNMT1 mRNA expression. These results indicate that TQ has protective effects against breast carcinogens through epigenetic mechanisms involving DNMT1 inhibition.


Subject(s)
Breast Neoplasms , Female , Humans , Animals , Rats , Breast Neoplasms/chemically induced , Breast Neoplasms/drug therapy , Benzoquinones/pharmacology , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Apoptosis
10.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38260958

ABSTRACT

We designed a highly sensitive fluorescent sensor for the early detection of sarcosine, a potential biomarker for prostate cancer. This sensor was based on surface-cobalt-doped fluorescent carbon quantum dots (Co-CD) using a FRET-based photoluminescent sensing platform. Blue luminescent carbon quantum dots (CQD) were synthesised through a hydrothermal approach, utilizing Delonix regia tree pod shells. Cobalt was employed to functionalize the CQD, enhancing the quantum-entrapped effects and minimizing surface flaws. To optimize Co-CD preparation, we employed a Box-Behnken design (BBD), and response surface methodology (RSM) based on single-factor experiments. The Co-CD was then used as a fluorescent probe for selective Cu2+ detection, with Cu2+ quenching Co-CD fluorescence through an energy transfer process, referred to as 'turn-off'. When sarcosine was introduced, the fluorescence intensity of Co-CD was restored, creating a 'turn-on' response. The sensor exhibited a Cu2+ detection limit (LOD) of 2.4 µM with a linear range of 0 µM to 10 µM. The sarcosine detection in phosphate buffer saline (PBS, pH 7.4) resulted in an LOD of 1.54 µM and a linear range of 0 to 10 µM. Importantly, the sensor demonstrated its suitability for clinical analysis by detecting sarcosine in human urine. In summary, our rapid and highly sensitive sensor offers a novel approach for the detection of sarcosine in real samples, facilitating early prostate cancer diagnosis.Communicated by Ramaswamy H. Sarma.

11.
Curr Pharm Biotechnol ; 25(3): 313-339, 2024.
Article in English | MEDLINE | ID: mdl-37287299

ABSTRACT

INTRODUCTION: Psoriasis is a chronic skin condition caused by an autoimmune response that accelerates the life cycle of skin cells, resulting in the characteristic symptoms of scaling, inflammation, and itching. METHODS: Palliative treatment options for psoriasis often prioritize the use of volatile oils. These oils contain monoterpenes, sesquiterpenes, and phenylpropanoids that are intricately linked to the molecular cascades involved in the pathogenesis and symptoms of psoriasis. To evaluate the antipsoriatic efficacy of volatile oils and their components, we conducted a systematic review of scientific studies. Our literature search encompassed various online databases, including PubMed, BIREME, SCIELO, Open Grey, Scopus, and ScienceDirect. The selected studies included experimental in vitro/in vivo assessments as well as clinical studies that examined the potential of volatile oils and their extracts as antipsoriatic agents. We excluded conference proceedings, case reports, editorials, and abstracts. Ultimately, we identified and evaluated a total of 12 studies for inclusion in our analysis. RESULTS: The data collected, compiled, and analyzed strongly support the interaction between volatile oils and their constituents with the key molecular pathways involved in the pathogenesis of psoriasis and the development of its symptoms. Volatile oils play a significant role in the palliative treatment of psoriasis, while their chemical constituents have the potential to reduce the symptoms and recurrence of this condition. CONCLUSION: The current review highlights that the constituents found in volatile oils offer distinct chemical frameworks that can be regarded as promising starting points for the exploration and development of innovative antipsoriatic agents.


Subject(s)
Dermatologic Agents , Oils, Volatile , Psoriasis , Sesquiterpenes , Humans , Oils, Volatile/therapeutic use , Oils, Volatile/chemistry , Plants , Monoterpenes , Psoriasis/drug therapy , Sesquiterpenes/analysis , Sesquiterpenes/therapeutic use , Dermatologic Agents/therapeutic use
12.
Curr Pharm Biotechnol ; 25(3): 268-284, 2024.
Article in English | MEDLINE | ID: mdl-37231750

ABSTRACT

Nanocapsules are polymeric nanoparticles encased in a polymeric coating composed of a predominantly non-ionic surfactant, macromolecules, phospholipids, and an oil core. Lipophilic drugs have been entrapped using various nanocarriers, including lipid cores, likely lipid nanocapsules, solid lipid nanoparticles, and others. A phase inversion temperature approach is used to create lipid nanocapsules. The PEG (polyethyleneglycol) is primarily utilised to produce nanocapsules and is a critical parameter influencing capsule residence time. With their broad drug-loading features, lipid nanocapsules have a distinct advantage in drug delivery systems, such as the capacity to encapsulate hydrophilic or lipophilic pharmaceuticals. Lipid nanocapsules, as detailed in this review, are surface modified, contain target-specific patterns, and have stable physical and chemical properties. Furthermore, lipid nanocapsules have target-specific delivery and are commonly employed as a marker in the diagnosis of numerous illnesses. This review focuses on nanocapsule synthesis, characterisation, and application, which will help understand the unique features of nanocapsules and their application in drug delivery systems.


Subject(s)
Nanocapsules , Nanocapsules/chemistry , Drug Delivery Systems , Polymers/chemistry , Surface-Active Agents/chemistry , Lipids/chemistry , Drug Carriers/chemistry
13.
CNS Neurol Disord Drug Targets ; 23(4): 411-419, 2024.
Article in English | MEDLINE | ID: mdl-37157197

ABSTRACT

General anaesthetics (GA) have been in continuous clinical use for more than 170 years, with millions of young and elderly populations exposed to GA to relieve perioperative discomfort and carry out invasive examinations. Preclinical studies have shown that neonatal rodents with acute and chronic exposure to GA suffer from memory and learning deficits, likely due to an imbalance between excitatory and inhibitory neurotransmitters, which has been linked to neurodevelopmental disorders. However, the mechanisms behind anaesthesia-induced alterations in late postnatal mice have yet to be established. In this narrative review, we present the current state of knowledge on early life anaesthesia exposure-mediated alterations of genetic expression, focusing on insights gathered on propofol, ketamine, and isoflurane, as well as the relationship between network effects and subsequent biochemical changes that lead to long-term neurocognitive abnormalities. Our review provides strong evidence and a clear picture of anaesthetic agents' pathological events and associated transcriptional changes, which will provide new insights for researchers to elucidate the core ideas and gain an in-depth understanding of molecular and genetic mechanisms. These findings are also helpful in generating more evidence for understanding the exacerbated neuropathology, impaired cognition, and LTP due to acute and chronic exposure to anaesthetics, which will be beneficial for the prevention and treatment of many diseases, such as Alzheimer's disease. Given the many procedures in medical practice that require continuous or multiple exposures to anaesthetics, our review will provide great insight into the possible adverse impact of these substances on the human brain and cognition.


Subject(s)
Anesthesia , Anesthetics , Isoflurane , Propofol , Humans , Mice , Animals , Aged , Anesthetics/pharmacology , Isoflurane/pharmacology , Propofol/pharmacology , Genomics
14.
J Womens Health (Larchmt) ; 33(2): 187-197, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38011004

ABSTRACT

Background: Previous research shows that 61% of children younger than 6 months in low- and middle-income countries (LMICs) are not exclusively breastfed. Although data on the role of pre- and postnatal depression on breastfeeding exclusivity is mixed, fetomaternal attachment might foster breastfeeding exclusivity. Thus, we tested the potential mediating role of fetomaternal attachment and postnatal depression in the relationship between maternal prenatal depression and exclusive breastfeeding. Materials and Methods: Data were collected as part of a prospective, cross-cultural project, Evidence for Better Lives Study, which enrolled 1208 expectant mothers, in their third trimester of pregnancy across eight sites, from LMICs. Of the whole sample, 1185 women (mean age = 28.32, standard deviation [SD] = 5.77) completed Computer-Aided Personal Interviews on prenatal depressive symptoms, fetomaternal attachment, and socioeconomic status. A total of 1054 women provided follow-up data at 3-6 months after birth, about postnatal depressive symptoms, exclusive breastfeeding, and infant health indicators. Path analysis was used to assess parallel mediation. Results: In the whole sample, the effect of prenatal depression on breastfeeding exclusivity was completely mediated by postnatal depression, whereas fetomaternal attachment did not mediate the relationship. The full mediation effect was replicated individually in Pakistan and Sri Lanka. Conclusions: The study results indicate that prenatal depression symptoms contributed to the development of depressive symptoms after birth, negatively affecting the probability of exclusive breastfeeding. Future research should explore this in early prevention interventions, increasing the chances of healthy child development in LMICs. Considering the mixed results around the sites, it is important to better understand the relationship between maternal depression, fetomaternal attachment and breastfeeding behavior in each site's socio-cultural context.


Subject(s)
Breast Feeding , Depression, Postpartum , Infant , Pregnancy , Child , Female , Humans , Adult , Depression, Postpartum/epidemiology , Prospective Studies , Depression/epidemiology , Mothers
15.
Pathol Res Pract ; 253: 155037, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38160482

ABSTRACT

Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.


Subject(s)
Colitis, Ulcerative , MicroRNAs , Humans , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Colitis, Ulcerative/therapy , MicroRNAs/genetics , RNA, Untranslated/genetics , Inflammation , Biomarkers/metabolism
16.
PLoS One ; 18(12): e0294663, 2023.
Article in English | MEDLINE | ID: mdl-38096182

ABSTRACT

Hepatitis E virus (HEV) is one of the leading acute liver infections triggered by viral hepatitis. Patients infected with HEV usually recover and the annual death rate is negligible. Currently, there is no HEV licensed vaccine available globally. This study was carried out to design a multi-epitope HEV peptide-based vaccine by retrieving already experimentally validated epitopes from ViPR database leading to epitope prioritization. Epitopes selected as potential vaccine candidates were non-allergen, immunogenic, soluble, non-toxic and IFN gamma positive. The epitopes were linked together by AAY linkers and the linker EAAAK was used to join adjuvant with epitopes. Toll-like receptor (TLR)-4 agonist was used as an adjuvant to boost efficacy of the vaccine. Furthermore, codon optimization followed by disulfide engineering was performed to analyse the designed vaccine's structural stability. Computational modeling of the immune simulation was done to examine the immune response against the vaccine. The designed vaccine construct was docked with TLR-3 receptor for their interactions and then subjected to molecular dynamic simulations. The vaccine model was examined computationally towards the capability of inducing immune responses which showed the induction of both humoral and cell mediated immunity. Taken together, our study suggests an In-silico designed HEV based multi-epitope peptide-based vaccine (MEPV) that needs to be examined in the wet lab-based data that can help to develop a potential vaccine against HEV.


Subject(s)
Hepatitis E virus , Humans , Epitopes, T-Lymphocyte , Vaccines, Subunit , Molecular Dynamics Simulation , Peptides , Computational Biology , Molecular Docking Simulation , Epitopes, B-Lymphocyte
17.
Article in English | MEDLINE | ID: mdl-38060041

ABSTRACT

This comprehensive review aims to provide an overview of the pharmacological properties of erucic acid (EA) and highlight areas that require further research. EA is an omega-9 fatty acid found in certain vegetable oil, such as rapeseed oil has demonstrated favourable effects in rodents, including ameliorating myocardial lipidosis (fat accumulation in the heart muscle), congestive heart disease, hepatic steatosis (fat accumulation in the liver), and memory impairments. These findings have prompted regulatory bodies to establish limits on EA content in food oils. The studies were performed on rodents and led to caution on ingesting the EA at high levels. Moreover, EA is frequently utilized as a nutritional supplement for the treatment of adrenoleukodystrophy, myocardial disease, and memory improvement. The review of the article indicated that EA improves cognitive function, has a part in Huntington's disease, interacts with peroxisome proliferator-activated receptors, inhibits elastase and thrombin, has anti-inflammatory, antioxidant, and anti-tumour properties, and inhibits influenza A virus. This article elucidates the pharmacological effects of EA, an omega-9 fatty acid.

18.
J Biomol Struct Dyn ; : 1-16, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37982302

ABSTRACT

The research was undertaken to assess the antidiabetic activity of rosiridin in the streptozotocin (STZ)-induced diabetic model. Type 2 diabetes mellitus was elicited chemically in experimental animals using STZ (60 mg/kg, i.p.). Experimental rats were arbitrarily allocated to normal control, rosiridin perse, diabetic control, and STZ + rosiridin groups. After the confirmation of diabetes, rosiridin (10 mg/kg) was given orally to the experimental animals for 30 days. Various anti-diabetic (blood glucose, insulin), hypolipidemic, anti-inflammatory (Nuclear factor kappa B, tumour necrosis factor-α, interleukin beta (IL-1ß), and IL-6), antioxidant (and malondialdehyde level, hepatic function and others markers (ALT, AST, adiponectin, and FNDC5) and histopathological indices of injury were evaluated. In addition, the rosinidin was docked into the active site of NF-Kß (1SVC), FNDC5 (4LSD) and adiponectin (5LXG) proteins with AutoDock tools. MD simulations were carried out for the complexes of rosiridin with NF-Kß, myokine and human adiponectin receptor 1. Rosiridin treatment restored the biochemical parameters and preserved the histopathological building of the pancreas as compared to the diabetic rats. Histopathological analysis of the pancreas confirmed that rosiridin antidiabetic efficacy in the STZ-induced diabetes mellitus model. The 5LXG_rosinidin showed favourable affinity with the best binding energies at -7.534 kcal/mol. MD simulations were carried out for the complexes of rosiridin with NF-Kß, myokine and human adiponectin receptor 1, the complex of myokine and rosiridin exhibited the most stable complex. Rosiridin may exhibit considerable anti-diabetic activity in the STZ-induced diabetes mellitus model.Communicated by Ramaswamy H. Sarma.

19.
Int J Biol Macromol ; 253(Pt 5): 127127, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37776926

ABSTRACT

Acemannan, the main polysaccharide in Aloe vera, is a -(1, 4)-acetylated polymannose. According to numerous research findings, acemannan is a viable alternative for the treatment of pathological disorders. Streptozotocin (STZ, 60 mg/kg) administered intraperitoneally caused type 2 diabetes in rats. The current study sought to determine the anti-diabetic efficacy of acemannan (25 and 50 mg/kg) in STZ-injected rats. Different biochemical parameters including HbA1C, glucose and serum insulin, lipid profile, inflammatory markers, antioxidant, oxidative balance, liver function test, glycogen and creatinine, and caspase-3 were evaluated. In addition, a molecular docking study was performed to estimate acemannan's binding affinity to inflammatory markers. Acemannan may be a potent anti-diabetic agent for the treatment of diabetic patients, which will aid in future research into alternative diabetes medications.


Subject(s)
Cytokines , Diabetes Mellitus, Type 2 , Humans , Rats , Animals , Streptozocin , Diabetes Mellitus, Type 2/drug therapy , Molecular Docking Simulation , Glucose , Apoptosis , Oxidative Stress
20.
ACS Omega ; 8(25): 22656-22664, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396259

ABSTRACT

BACKGROUND: The effect of europinidin on alcoholic liver damage in rats was examined in this research. METHODS: A total of 24 Wistar rats were grouped in the same way into four groups: normal control (normal), ethanol control (EtOH), europinidin low dose (10 mg/kg), and europinidin higher dose (20 mg/kg). The test group rats were orally treated with europinidin-10 and europinidin-20 for 4 weeks, whereas 5 mL/kg distilled water was administered to control rats. In addition, 1 h after the last dose of the above-mentioned oral treatment, 5 mL/kg (i.p.) EtOH was injected to induce liver injury. After 5 h of EtOH treatment, samples of blood were withdrawn for biochemical estimations. RESULTS: Administration of europinidin at both doses restored all of the estimated serum, i.e., liver function tests (ALT, AST, ALP), biochemical test (Creatinine, albumin, BUN, direct bilirubin, and LDH), lipid assessment (TC and TG), endogenous antioxidants (GSH-Px, SOD, and CAT), malondialdehyde (MDA), nitric oxide (NO), cytokines (TGF-ß, TNF-α, IL-1ß, IL-6, IFN-γ, and IL-12), caspase-3, and nuclear factor kappa B (NF-κB) associated with the EtOH group. CONCLUSION: The results of the investigation showed that europinidin had favorable effects in rats given EtOH and may have hepatoprotective potential property.

SELECTION OF CITATIONS
SEARCH DETAIL
...