Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 244: 116128, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38598924

ABSTRACT

Genotoxic impurities (GTIs) are potential carcinogens that need to be controlled down to ppm or lower concentration levels in pharmaceuticals under strict regulations. The static headspace gas chromatography (HS-GC) coupled with electron capture detection (ECD) is an effective approach to monitor halogenated and nitroaromatic genotoxins. Deep eutectic solvents (DESs) possess tunable physico-chemical properties and low vapor pressure for HS-GC methods. In this study, zwitterionic and non-ionic DESs have been used for the first time to develop and validate a sensitive analytical method for the analysis of 24 genotoxins at sub-ppm concentrations. Compared to non-ionic diluents, zwitterionic DESs produced exceptional analytical performance and the betaine : 7 (1,4- butane diol) DES outperformed the betaine : 5 (1,4-butane diol) DES. Limits of detection (LOD) down to the 5-ppb concentration level were achieved in DESs. Wide linear ranges spanning over 5 orders of magnitude (0.005-100 µg g-1) were obtained for most analytes with exceptional sensitivities and high precision. The method accuracy and precision were validated using 3 commercially available drug substances and excellent recoveries were obtained. This study broadens the applicability of HS-GC in the determination of less volatile GTIs by establishing DESs as viable diluent substitutes for organic solvents in routine pharmaceutical analysis.


Subject(s)
Deep Eutectic Solvents , Drug Contamination , Limit of Detection , Mutagens , Drug Contamination/prevention & control , Chromatography, Gas/methods , Mutagens/analysis , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Deep Eutectic Solvents/chemistry , Deep Eutectic Solvents/analysis , Green Chemistry Technology/methods , Reproducibility of Results , Solvents/chemistry
2.
Anal Chim Acta ; 1301: 342448, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553120

ABSTRACT

BACKGROUND: The incorporation of bimetallic magnetic ionic liquids (MILs) in microextraction methods is an emerging trend due to the improved magnetic susceptibility offered by these solvents, which relies on the presence of metallic components in both the cation and the anion. This feature favors easy magnetic separation of these solvents in analytical sample preparation strategies. However, reported liquid-phase microextraction methods based on bimetallic MILs still present an important drawback in that the MILs are highly viscous, making a dispersive solvent during the microextraction procedure necessary, while also requiring a tedious back-extraction step prior to the chromatographic analysis. RESULTS: We propose for the first time a new generation of ultra-low viscosity bimetallic MILs composed of two paramagnetic Mn(II) complexes characterized by their easy usage in dispersive liquid-liquid microextraction (DLLME). The approach does not require dispersive solvent and the MIL-DLLME setup was directly combined with high-performance liquid chromatography (HPLC) and fluorescence detection (FD), without any back-extraction step. The approach was evaluated for the determination of five monohydroxylated polycyclic aromatic hydrocarbons, as carcinogenic biomarkers, in human urine. Optimum conditions of the MIL-DLLME method included the use of a low MIL volume (75 µL), a short extraction time (5 min), and no need of any dispersive solvent neither NaCl. The method presented limits of detection down to 7.50 ng L-1, enrichment factors higher than 17, and provided inter-day relative standard deviation lower than 11%. Analysis of urine samples was successfully performed, with biomarker content found at levels between 0.24 and 7.8 ng mL-1. SIGNIFICANCE: This study represents the first liquid-phase microextraction method using the new generation of low-viscous bimetallic MILs. The proposed MIL-DLLME approach represents 2 important advances with respect to previous methods employing bimetallic MILs: 1) no dispersive solvent is required, and 2) direct injection of the MIL in the HPLC is possible after minor dilution (no back extraction steps are required). Therefore, the microextraction strategy is simple, rapid, and consumes very small amounts of energy.

3.
ACS Omega ; 8(30): 27751-27760, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37546640

ABSTRACT

Magnetic ionic liquids (MILs) comprise a subcategory of ionic liquids (ILs) and contain a paramagnetic metal center allowing them to be readily manipulated by an external magnetic field. While MILs are popularly employed as solvents in catalysis, separations, and organic synthesis, most low viscosity combinations possess a hydrophilic character that limits their use in aqueous matrices. To date, no study has reported the synthesis and characterization of hydrophobic MILs with viscosities similar to those of hydrophilic MILs and organic solvents while simultaneously exhibiting enhanced magnetic and thermal properties. In this study, diglycolic acid esters are employed as ligands to chelate with paramagnetic metals to produce cations that are paired with metal chelates composed of hexafluoroacetylacetonate ligands to form MILs incorporating multiple metal centers in the cation and anion. Viscosity values below 31.6 cP were obtained for these solvents, the lowest ever reported for hydrophobic MILs. Solubilities in nonpolar solvents such as benzene were observed to be as high as 50% (w/v) MIL-to-solvent ratio while being insoluble in water at concentrations as low as 0.01% (w/v). Effective paramagnetic moment values for these solvents ranged from 5.33 to 15.56 Bohr magnetons (µB), with mixed metal MILs containing multiple lanthanides in the anion generally offering higher magnetic susceptibilities. MILs composed of ligands containing octyl substituents were found to possess thermal stabilities up to 190 °C. The synthetic strategies explored in this study exploit the highly tunable nature of the employed cation and anion pairs to design versatile ultra-low viscosity magnetoactive solvents that possess tremendous potential and applicability in liquid-liquid separation systems, catalysis, and microfluidics where the mechanical movement of the solvent can be easily facilitated using electromagnets.

4.
ACS Sustain Chem Eng ; 11(17): 6665-6675, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37152071

ABSTRACT

Deep eutectic solvents (DESs) are a class of sustainable solvents that have found numerous applications in different fields. One of their main attributes is the possibility of easily modifying their physicochemical properties by varying the type of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) that comprise them. Choline chloride ([Ch+][Cl-])-based hydrophilic DESs were among the first studied and the most used because of their capacity to easily create a hydrogen bonding network that lies in its unique chemical structure, characterized by a hydroxyl substituent within the ammonium headgroup. In this study, a new class of hydrophobic [Ch+][Br-]-modified salts were synthesized to produce HBAs with similar properties to choline for the preparation of hydrophobic DESs. Six different [Ch+][Br-]-based HDESs were prepared and characterized in terms of hydrophobicity, viscosity, and solvation properties (hydrogen bonding, dispersion, dipolarity/polarizability, n-π, and π-π interactions). They were employed as solvents in a microextraction method for the determination of phytochemicals in Cannabis sativa L. plant. The extraction performance of the [Ch+][Br-]-based HDESs was compared to eutectic mixtures based on conventional hydrophobic HBAs, and the results revealed that the unique properties of [Ch+][Br-]-modified salts allowed for the extraction of both hydrophilic (i.e., flavonoids) and hydrophobic compounds (i.e., cannabinoids).

5.
J Chromatogr A ; 1667: 462871, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35158157

ABSTRACT

Choline chloride-based deep eutectic solvents (DESs) are immensely popular in organic synthesis, catalysis, electrochemistry, and separation science. A popular choice of hydrogen bond donor (HBD) among these DESs consists of both straight-chain and branched polyols that can incorporate additional functional groups, such as ether linkages. Previous studies have shown that the extraction efficiency is significantly altered when the molar ratio of HBD in choline chloride-based DES systems is varied, but no study has been able to relate it to their solvation characteristics. This is largely due to the limited sensitivity of existing solvatochromic dye techniques to detect minor changes in solvation interactions when the DES composition is varied. In this study, inverse gas chromatography was employed for the first time to investigate the variation in solvation properties for DESs comprised of choline salts as hydrogen bond acceptors (HBAs) and polyols as HBDs when their HBA/HBD ratio is systematically altered. Unlike many organic solvents, DES systems investigated in this work possessed a significant hydrogen bond character. It was observed that the hydrogen bond basicity generally plateaued at higher molar ratios of HBD while the hydrogen bond acidity was observed to be the highest at HBA/HBD ratios of 1:10 in all DESs. Amongst all solvents, neat HBDs (triethylene glycol and 1,8-octane diol) possessed the weakest hydrogen bond basicity since they lack the chloride anion that acts as the primary hydrogen bond acceptor. Results from this study demonstrate that the solvation characteristics of DESs are largely different from their starting materials while the HBA/HBD ratio further influences their solvation interactions that can in turn impact important parameters such as extraction yields.


Subject(s)
Choline , Deep Eutectic Solvents , Chlorides , Choline/chemistry , Hydrogen Bonding , Solvents/chemistry
6.
J Chromatogr A ; 1643: 462011, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33799072

ABSTRACT

Deep eutectic solvents (DESs) have gained increasing popularity in separation science due to the fact that their physico-chemical properties can be easily fine-tuned by varying the type or ratio of hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). While it is well-known that the molar ratio of HBA/HBD affects the melting point of a eutectic mixture, much less is understood regarding its effect on the magnitude of individual solvation interactions. This is largely due to the fact that established solvatochromic dye methods lack sensitivity when the HBA/HBD ratio is varied slightly in a eutectic mixture. Herein, this study is the first to measure the variation of DES solvation interactions with small changes in the molar ratio of HBA/HBD using inverse gas chromatography (IGC). Solute-solvent interactions of three different DES systems comprised of ammonium salts and organic acids were examined. The probe molecules were studied for 18 eutectic mixtures of varied HBA and HBD composition. DES hydrogen bond basicity, hydrogen bond acidity, and dispersive-type interactions exhibited the greatest change when the molar ratio of HBA/HBD was varied in the eutectic mixture. Results from this study demonstrate that the HBA/HBD ratio can be used to modulate the solvation characteristics for this class of DESs in separations and that the stoichiometric ratio of the HBA/HBD is important in ensuring their reproducible preparation.


Subject(s)
Ammonium Compounds/chemistry , Carboxylic Acids/chemistry , Salts/chemistry , Solvents/chemistry , Alkanes/chemistry , Chromatography, Gas , Hydrogen Bonding , Solutions
7.
J Chromatogr A ; 1633: 461613, 2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33161358

ABSTRACT

Deep eutectic solvents (DESs) have emerged as alternatives to conventional organic solvents and ionic liquids (ILs). Their tunable and designer physio-chemical properties, low cost, and ease of preparation make them attractive solvent systems for use in extractions and additives to chromatographic separations. However, due to the diverse range of hydrogen bond acceptors and donors that comprise DESs, choosing the appropriate solvent for separations can be challenging. This review discusses all methods of DES preparation and details their advantages and disadvantages. Since polarity is an important aspect in their use in separations, the classification of DESs based on the betaine dye and nile red scales as well as Kamlet-Taft parameters is also discussed. Finally, a summary of applications of DESs in various extraction processes (phenolics, fuels, metals, proteins, carbohydrates), solid-phase extraction, solid-phase microextraction, as well as capillary electrochromatography is provided.


Subject(s)
Capillary Electrochromatography , Chemistry Techniques, Analytical/methods , Solvents/chemistry , Hydrogen Bonding , Ionic Liquids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...