Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 919, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35042875

ABSTRACT

Understanding the human brain's perception of different thermal sensations has sparked the interest of many neuroscientists. The identification of distinct brain patterns when processing thermal stimuli has several clinical applications, such as phantom-limb pain prediction, as well as increasing the sense of embodiment when interacting with neurorehabilitation devices. Notwithstanding the remarkable number of studies that have touched upon this research topic, understanding how the human brain processes different thermal stimuli has remained elusive. More importantly, very intense thermal stimuli perception dynamics, their related cortical activations, as well as their decoding using effective features are still not fully understood. In this study, using electroencephalography (EEG) recorded from three healthy human subjects, we identified spatial, temporal, and spectral patterns of brain responses to different thermal stimulations ranging from extremely cold and hot stimuli (very intense), moderately cold and hot stimuli (intense), to a warm stimulus (innocuous). Our results show that very intense thermal stimuli elicit a decrease in alpha power compared to intense and innocuous stimulations. Spatio-temporal analysis reveals that in the first 400 ms post-stimulus, brain activity increases in the prefrontal and central brain areas for very intense stimulations, whereas for intense stimulation, high activity of the parietal area was observed post-500 ms. Based on these identified EEG patterns, we successfully classified the different thermal stimulations with an average test accuracy of 84% across all subjects. En route to understanding the underlying cortical activity, we source localized the EEG signal for each of the five thermal stimuli conditions. Our findings reveal that very intense stimuli were anticipated and induced early activation (before 400 ms) of the anterior cingulate cortex (ACC). Moreover, activation of the pre-frontal cortex, somatosensory, central, and parietal areas, was observed in the first 400 ms post-stimulation for very intense conditions and starting 500 ms post-stimuli for intense conditions. Overall, despite the small sample size, this work presents novel findings and a first comprehensive approach to explore, analyze, and classify EEG-brain activity changes evoked by five different thermal stimuli, which could lead to a better understanding of thermal stimuli processing in the brain and could, therefore, pave the way for developing a real-time withdrawal reaction system when interacting with prosthetic limbs. We underpin this last point by benchmarking our EEG results with a demonstration of a real-time withdrawal reaction of a robotic prosthesis using a human-like artificial skin.


Subject(s)
Brain
2.
Front Robot AI ; 8: 772141, 2021.
Article in English | MEDLINE | ID: mdl-35155588

ABSTRACT

The field of human-robot interaction (HRI) research is multidisciplinary and requires researchers to understand diverse fields including computer science, engineering, informatics, philosophy, psychology, and more disciplines. However, it is hard to be an expert in everything. To help HRI researchers develop methodological skills, especially in areas that are relatively new to them, we conducted a virtual workshop, Workshop Your Study Design (WYSD), at the 2021 International Conference on HRI. In this workshop, we grouped participants with mentors, who are experts in areas like real-world studies, empirical lab studies, questionnaire design, interview, participatory design, and statistics. During and after the workshop, participants discussed their proposed study methods, obtained feedback, and improved their work accordingly. In this paper, we present 1) Workshop attendees' feedback about the workshop and 2) Lessons that the participants learned during their discussions with mentors. Participants' responses about the workshop were positive, and future scholars who wish to run such a workshop can consider implementing their suggestions. The main contribution of this paper is the lessons learned section, where the workshop participants contributed to forming this section based on what participants discovered during the workshop. We organize lessons learned into themes of 1) Improving study design for HRI, 2) How to work with participants - especially children -, 3) Making the most of the study and robot's limitations, and 4) How to collaborate well across fields as they were the areas of the papers submitted to the workshop. These themes include practical tips and guidelines to assist researchers to learn about fields of HRI research with which they have limited experience. We include specific examples, and researchers can adapt the tips and guidelines to their own areas to avoid some common mistakes and pitfalls in their research.

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2861-2864, 2020 07.
Article in English | MEDLINE | ID: mdl-33018603

ABSTRACT

Decoding olfactory cognition has been generating significant interest in recent years due to a wide range of applications, from diagnosing neurodegenerative disorders to consumer research and traditional medicine. In this study, we have investigated whether changes in odor stimuli evaluation across repeated stimuli presentation can be attributed to changes in brain perception of the stimuli. Epoch intervals representing olfactory sensory perception were extracted from electroencephalography (EEG) signals using minimum variance distortionless response (MVDR)-based single trial event related potential (ERP) approach to understand the evoked response to high pleasantness and low pleasantness stimuli. We found statistically significant changes in self reported stimuli evaluation between initial and final trials (p < 0.05) for both stimuli categories. However, the changes in ERP amplitude were found to be statistically significant only for the high pleasantness stimuli. This implies that olfactory stimuli of higher hedonic value recruit high-order cognitive processing that may be responsible for initial increased ERP response, as well as for rapid subsequent adaptation in processing the stimuli.


Subject(s)
Evoked Potentials , Odorants , Brain , Electroencephalography , Humans , Smell
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5160-5163, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947020

ABSTRACT

Olfactory perception involves complex processing distributed along several cortical and sub-cortical regions in the brain. Although several studies have shown that the power spectra of the electroencephalography (EEG) contain information that can be used to differentiate between pleasant and unpleasant stimuli, there are still no studies which investigate whether EEG can be used to differentiate between the neural responses to olfactory stimuli of different levels of pleasantness. For this purpose, in the present study, local brain information within established frequency bands (θ, α and γ) has been used to devise discriminative features in a classification approach. A comparative study of four widely used classifiers is presented and SVM gives the best performance (accuracy = 75.71%). The results reveal that is it possible to objectively discriminate using EEG spectral features between fine levels of perceived pleasantness using the SVM-based classifier within a cross-validation procedure.


Subject(s)
Brain/physiology , Electroencephalography , Emotions , Smell , Support Vector Machine , Humans
5.
Cogn Neurodyn ; 12(4): 365-376, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30137873

ABSTRACT

Development of techniques for detection of mental fatigue has varied applications in areas where sustaining attention is of critical importance like security and transportation. The objective of this study is to develop a novel real-time driving fatigue detection methodology based on dry Electroencephalographic (EEG) signals. The study has employed two methods in the online detection of mental fatigue: power spectrum density (PSD) and sample entropy (SE). The wavelet packets transform (WPT) method was utilized to obtain the θ (4-7 Hz), α (8-12 Hz) and ß (13-30 Hz) bands frequency components for calculating corresponding PSD of the selected channels. In order to improve the fatigue detection performance, the system was individually calibrated for each subject in terms of fatigue-sensitive channels selection. Two fatigue-related indexes: ( θ+α )/ ß and θ / ß were computed and then fused into an integrated metric to predict the degree of driving fatigue. In the case of SE extraction, the mean of SE averaged across two EEG channels ('O1h' and 'O2h') was used for fatigue detection. Ten healthy subjects participated in our study and each of them performed two sessions of simulated driving. In each session, subjects were required to drive simulated car for 90 min without any break. The results demonstrate that our proposed methods are effective for fatigue detection. The prediction of fatigue is consistent with the observation of reaction time that was recorded during simulated driving, which is considered as an objective behavioral measure.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 2446-2449, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060393

ABSTRACT

Development of interventions to prevent vigilance decrement has important applications in sensitive areas like transportation and defence. The objective of this work is to use multisensory (visual and haptic) stimuli for cognitive enhancement during mundane tasks. Two different epoch intervals representing sensory perception and motor response were analysed using minimum variance distortionless response (MVDR) based single trial ERP estimation to understand the performance dependency on both factors. Bereitschaftspotential (BP) latency L3 (r=0.6 in phase 1 (visual) and r=0.71 in phase 2 (visual and haptic)) was significantly correlated with reaction time as compared to that of sensory ERP latency L2 (r=0.1 in both phase 1 and phase 2). This implies that low performance in monotonous tasks is predominantly dependent on the prolonged neural interaction with the muscles to initiate movement. Further, negative relationship was found between the ERP latencies related to sensory perception and Bereitschaftspotential (BP) and occurrence of epochs when multisensory cues are provided. This means that vigilance decrement is reduced with the help of multisensory stimulus presentation in prolonged monotonous tasks.


Subject(s)
Evoked Potentials , Auditory Perception , Cues , Photic Stimulation , Reaction Time , Visual Perception , Wakefulness
SELECTION OF CITATIONS
SEARCH DETAIL
...