Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32326528

ABSTRACT

Distribution of pesticide residues in the environment and their transport to surface water bodies is one of the most important environmental challenges. Fate of pesticides in the complex environments, especially in aquatic phases such as lakes and rivers, is governed by the main properties of the contaminants and the environmental properties. In this study, a multimedia mass modeling approach using the Quantitative Water Air Sediment Interaction (QWASI) model was applied to explore the fate of organochlorine pesticide residues of methoxychlor, α-HCH and endosulfan-sulfate in the lake Naivasha (Kenya). The required physicochemical data of the pesticides such as molar mass, vapor pressure, air-water partitioning coefficient (KAW), solubility, and the Henry's law constant were provided as the inputs of the model. The environment data also were collected using field measurements and taken from the literature. The sensitivity analysis of the model was applied using One At a Time (OAT) approach and calibrated using measured pesticide residues by passive sampling method. Finally, the calibrated model was used to estimate the fate and distribution of the pesticide residues in different media of the lake. The result of sensitivity analysis showed that the five most sensitive parameters were KOC, logKow, half-life of the pollutants in water, half-life of the pollutants in sediment, and KAW. The variations of outputs for the three studied pesticide residues against inputs were noticeably different. For example, the range of changes in the concentration of α-HCH residue was between 96% to 102%, while for methoxychlor and endosulfan-sulfate it was between 65% to 125%. The results of calibration demonstrated that the model was calibrated reasonably with the R2 of 0.65 and RMSE of 16.4. It was found that methoxychlor had a mass fraction of almost 70% in water column and almost 30% of mass fraction in the sediment. In contrast, endosulfan-sulfate had highest most fraction in the water column (>99%) and just a negligible percentage in the sediment compartment. α-HCH also had the same situation like endosulfan-sulfate (e.g., 99% and 1% in water and sediment, respectively). Finally, it was concluded that the application of QWASI in combination with passive sampling technique allowed an insight to the fate process of the studied OCPs and helped actual concentration predictions. Therefore, the results of this study can also be used to perform risk assessment and investigate the environmental exposure of pesticide residues.


Subject(s)
Endosulfan , Hexachlorocyclohexane , Hydrocarbons, Chlorinated , Pesticide Residues , Pesticides , Water Pollutants, Chemical , Endosulfan/analysis , Environmental Exposure , Environmental Monitoring/methods , Hexachlorocyclohexane/analysis , Kenya , Lakes , Methoxychlor , Multimedia , Pesticide Residues/analysis , Water Pollutants, Chemical/analysis
2.
Environ Monit Assess ; 190(9): 506, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30088098

ABSTRACT

The original version of this article contained a mistake. The pesticides concentrations units have to be updated to ng/L (nanogram per liter) in the text and partly in Fig. 5 (left part).

3.
Environ Monit Assess ; 190(6): 349, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29777312

ABSTRACT

Passive sampling techniques can improve the discovery of low concentrations by continuous collecting the contaminants, which usually go undetected with classic and once-off time-point grab sampling. The aim of this study was to evaluate organochlorine pesticide (OCP) residues in the aquatic environment of the Lake Naivasha river basin (Kenya) using passive sampling techniques. Silicone rubber sheet and Speedisk samplers were used to detect residues of α-HCH, ß-HCH, γ-HCH, δ-HCH, heptachlor, aldrin, heptachlor epoxide, pp-DDE, endrin, dieldrin, α-endosulfan, ß-endosulfan, pp-DDD, endrin aldehyde, pp-DDT, endosulfan sulfate, and methoxychlor in the Malewa River and Lake Naivasha. After solvent extraction from the sampling media, the residues were analyzed using gas chromatography electron capture detection (GC-ECD) for the OCPs and gas chromatography-mass spectrometry (GC-MS) for the PCB reference compounds. Measuring the OCP residues using the silicone rubber samplers revealed the highest concentration of residues (∑OCPs of 81 (± 18.9 SD) ng/L) to be at the Lake site, being the ultimate accumulation environment for surficial hydrological, chemical, and sediment transport through the river basin. The total OCP residue sums changed to 71.5 (± 11.3 SD) ng/L for the Middle Malewa and 59 (± 12.5 SD) ng/L for the Upper Malewa River sampling sites. The concentration sums of OCPs detected using the Speedisk samplers at the Upper Malewa, Middle Malewa, and the Lake Naivasha sites were 28.2 (± 4.2 SD), 31.3 (± 1.8 SD), and 34.2 (± 6.4 SD) ng/L, respectively. An evaluation of the different pesticide compound variations identified at the three sites revealed that endosulfan sulfate, α-HCH, methoxychlor, and endrin aldehyde residues were still found at all sampling sites. However, the statistical analysis of one-way ANOVA for testing the differences of ∑OCPs between the sampling sites for both the silicone rubber sheet and Speedisk samplers showed that there was no significant difference from the Upper Malewa to the Lake site (P < 0.05). Finally, the finding of this study indicated that continued monitoring of pesticides residues in the catchment remains highly recommended.


Subject(s)
Environmental Monitoring/methods , Hydrocarbons, Chlorinated/analysis , Lakes/analysis , Pesticide Residues/analysis , Water Pollutants, Chemical/analysis , Chromatography, Gas/methods , Gas Chromatography-Mass Spectrometry/methods , Kenya
SELECTION OF CITATIONS
SEARCH DETAIL
...