Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(2): e2304704, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37709513

ABSTRACT

Dermal interstitial fluid (ISF) is emerging as a rich source of biomarkers that complements conventional biofluids such as blood and urine. However, the impact of ISF sampling in clinical applications has been limited owing to the challenges associated with extraction. The implementation of microneedle-based wearable devices that can extract dermal ISF in a pain-free and easy-to-use manner has attracted growing attention in recent years. Here, a fully integrated touch-activated wearable device based on a laser-drilled hollow microneedle (HMN) patch for continuous sampling and sensing of dermal ISF is introduced. The developed platform can produce and maintain the required vacuum pressure (as low as ≈ -53 kPa) to collect adequate volumes of ISF (≈2 µL needle-1 h-1 ) for medical applications. The vacuum system can be activated through a one-touch finger operation. A parametric study is performed to investigate the effect of microneedle array size, vacuum pressure, and extraction duration on collected ISF. The capability of the proposed platform for continuous health monitoring is further demonstrated by the electrochemical detection of glucose and pH levels of ISF in animal models. This HMN-based system provides an alternative tool to the existing invasive techniques for ISF collection and sensing for medical diagnosis and treatment.


Subject(s)
Extracellular Fluid , Wearable Electronic Devices , Animals , Touch , Glucose , Needles
2.
Adv Mater ; 35(6): e2207081, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36401580

ABSTRACT

Biodegradable sensors based on integrating conductive layers with polymeric materials in flexible and stretchable forms have been established. However, the lack of a generalized microfabrication method results in large-sized, low spatial density, and low device yield compared to the silicon-based devices manufactured via batch-compatible microfabrication processes. Here, a batch fabrication-compatible photolithography-based microfabrication approach for biodegradable and highly miniaturized essential sensor components is presented on flexible and stretchable substrates. Up to 1600 devices are fabricated within a 1 cm2 footprint and then the functionality of various biodegradable passive electrical components, mechanical sensors, and chemical sensors is demonstrated on flexible and stretchable substrates. The results are highly repeatable and consistent, proving the proposed method's high device yield and high-density potential. This simple, innovative, and robust fabrication recipe allows complete freedom over the applicability of various biodegradable materials with different properties toward the unique application of interests. The process offers a route to utilize standard micro-fabrication procedures toward scalable fabrication of highly miniaturized flexible and stretchable transient sensors and electronics.

3.
Biosens Bioelectron ; 213: 114450, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35688025

ABSTRACT

Glucose monitoring before, during, and after exercise is essential for people with diabetes as exercise increases the risk of activity-induced hyper- and hypo-glycemic events. The situation is even more challenging for athletes with diabetes as they have impaired metabolic control compared to sedentary individuals. In this regard, a compact and noninvasive wearable glucose monitoring device that can be easily worn is critical to enabling glucose monitoring. This report presents an ultra-compact glucose tag with a footprint and weight of 1.2 cm2 and 0.13 g, respectively, for sweat analysis. The device comprises a near field communication (NFC) chip, antenna, electrochemical sensor, and microfluidic channels implemented in different material layers. The device has a flexible and conformal structure and can be easily attached to different body parts. The battery-less operation of the device was enabled by NFC-based wireless power transmission and the compact antenna. Femtosecond laser ablation was employed to fabricate a highly compact and flexible NFC antenna. The proposed device demonstrated excellent operating characteristics with a limit of detection (LOD), limit of quantification (LOQ), and sensitivity of 24 µM, 74 µM, and 1.27 µA cm-2 mM-1, respectively. The response of the proposed sensor in sweat glucose detection and quantification was validated by nuclear magnetic resonance spectroscopy (NMR). Also, the device's capability in attachment to the body, sweat collection, and glucose measurement was demonstrated through in vitro and in vivo experiments, and satisfactory results were obtained.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Biosensing Techniques/methods , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Glucose/analysis , Humans , Sweat/chemistry
4.
IEEE Trans Biomed Eng ; 69(1): 513-524, 2022 01.
Article in English | MEDLINE | ID: mdl-34329154

ABSTRACT

OBJECTIVE: Hydrodynamic cavitation is characterized by the formation of bubbles inside a flow due to local reduction of pressure below the saturation vapor pressure. The resulting growth and violent collapse of bubbles lead to a huge amount of released energy. This energy can be implemented in different fields such as heat transfer enhancement, wastewater treatment and chemical reactions. In this study, a cystoscope based on small scale hydrodynamic cavitation was designed and fabricated to exploit the destructive energy of cavitation bubbles for treatment of tumor tissues. The developed device is equipped with a control system, which regulates the movement of the cystoscope in different directions. According to our experiments, the fabricated cystoscope was able to locate the target and expose cavitating flow to the target continuously and accurately. The designed cavitation probe embedded into the cystoscope caused a significant damage to prostate cancer and bladder cancer tissues within less than 15 minutes. The results of our experiments showed that the cavitation probe could be easily coupled with endoscopic devices because of its small diameter. We successfully integrated a biomedical camera, a suction tube, tendon cables, and the cavitation probe into a 6.7 mm diameter cystoscope, which could be controlled smoothly and accurately via a control system. The developed device is considered as a mechanical ablation therapy, can be a solid alternative for minimally invasive tissue ablation methods such as radiofrequency (RF) and laser ablation, and could have lower side effects compared to ultrasound therapy and cryoablation.


Subject(s)
Ablation Techniques , Prostatic Neoplasms , Cystoscopes , Humans , Hydrodynamics , Male , Radio Waves
5.
Langmuir ; 37(46): 13567-13575, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34751032

ABSTRACT

Sustaining dropwise condensation is of great importance in many applications, especially in confined spaces. In this regard, superhydrophobic surfaces enhance condensation heat transfer performance due to the discrete droplet formation and rapid removal. On the other hand, droplets tend to nucleate easier and faster on hydrophobic surfaces compared to superhydrophobic ones. To take advantage of the mixed wettability, we fabricated biphilic surfaces and integrated them to small channels to assess their effect on thermal performance in flow condensation in small channels. Hydrophobic islands in the range of 100-900 µm diameter were fabricated using a combination of wet etching, surface functionalization, and physical vapor deposition (PVD) techniques. Condensation experiments were performed in a minichannel with a length, width, and height of 37, 10, and 1 mm, respectively. Here, we report optimum island diameters for the hydrophobic islands in terms of the maximum thermal performance. We show that considering the optimum point for each steam mass flux corresponding to the best heat transfer performance, the condensation heat transfer coefficient is increased by 51, 48, 42, 40, and 36% compared to the plain reference hydrophobic surface for steam mass fluxes of 10, 20, 30, 40, and 50 kg/m2 s, respectively. The optimum island diameters are obtained as 200, 300, 400, 400, and 500 µm, with the ratios of hydrophobic to superhydrophobic surface areas (A* = Ahydrophobic/Asuperhydrophobic) of 3.2, 7.6, 14.4, 14.4, and 24.4%, for steam mass fluxes of 10, 20, 30, 40, and 50 kg/m2 s, respectively. The liquid film forming on the liquid-vapor interface acts as an insulation layer and generates thermal resistance, and bridges appear on the patterned areas and deteriorate the thermal performance. Therefore, it is crucial to characterize the role of droplet mobility on biphilic surfaces to avoid the occurrence of bridging. Through visualization, we demonstrate that the optimum conditions correspond to enhanced droplet nucleation and rapid sweeping regions, where droplet pinning and bridging do not occur. The trends in condensation heat transfer with surface mixed wettability can be divided into three regions: enhanced droplet nucleation and rapid sweeping, highly pinned droplet, and bridging droplet segments. We reveal that the interfacial heat transfer augmentation in the enhanced droplet nucleation and rapid sweeping region is due to both spatial control of droplet nucleation and an increase in the sweeping period. Furthermore, by fitting the experimental data, a correlation for predicting the optimum island diameter for biphilic surfaces is proposed for condensation heat transfer in confined channels, which will be a valuable guideline for engineers and researchers working on the design and development of thermal systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...