Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 602(7896): 268-273, 2022 02.
Article in English | MEDLINE | ID: mdl-35110736

ABSTRACT

Genetic risk for autism spectrum disorder (ASD) is associated with hundreds of genes spanning a wide range of biological functions1-6. The alterations in the human brain resulting from mutations in these genes remain unclear. Furthermore, their phenotypic manifestation varies across individuals7,8. Here we used organoid models of the human cerebral cortex to identify cell-type-specific developmental abnormalities that result from haploinsufficiency in three ASD risk genes-SUV420H1 (also known as KMT5B), ARID1B and CHD8-in multiple cell lines from different donors, using single-cell RNA-sequencing (scRNA-seq) analysis of more than 745,000 cells and proteomic analysis of individual organoids, to identify phenotypic convergence. Each of the three mutations confers asynchronous development of two main cortical neuronal lineages-γ-aminobutyric-acid-releasing (GABAergic) neurons and deep-layer excitatory projection neurons-but acts through largely distinct molecular pathways. Although these phenotypes are consistent across cell lines, their expressivity is influenced by the individual genomic context, in a manner that is dependent on both the risk gene and the developmental defect. Calcium imaging in intact organoids shows that these early-stage developmental changes are followed by abnormal circuit activity. This research uncovers cell-type-specific neurodevelopmental abnormalities that are shared across ASD risk genes and are finely modulated by human genomic context, finding convergence in the neurobiological basis of how different risk genes contribute to ASD pathology.


Subject(s)
Autism Spectrum Disorder , Genetic Predisposition to Disease , Neurons , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Cerebral Cortex/cytology , DNA-Binding Proteins/genetics , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Histone-Lysine N-Methyltransferase/genetics , Humans , Neurons/classification , Neurons/metabolism , Neurons/pathology , Organoids/cytology , Proteomics , RNA-Seq , Single-Cell Analysis , Transcription Factors/genetics
3.
Nature ; 595(7868): 554-559, 2021 07.
Article in English | MEDLINE | ID: mdl-34163074

ABSTRACT

The mammalian cerebral cortex has an unparalleled diversity of cell types, which are generated during development through a series of temporally orchestrated events that are under tight evolutionary constraint and are critical for proper cortical assembly and function1,2. However, the molecular logic that governs the establishment and organization of cortical cell types remains unknown, largely due to the large number of cell classes that undergo dynamic cell-state transitions over extended developmental timelines. Here we generate a comprehensive atlas of the developing mouse neocortex, using single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing. We sampled the neocortex every day throughout embryonic corticogenesis and at early postnatal ages, and complemented the sequencing data with a spatial transcriptomics time course. We computationally reconstruct developmental trajectories across the diversity of cortical cell classes, and infer their spatial organization and the gene regulatory programs that accompany their lineage bifurcation decisions and differentiation trajectories. Finally, we demonstrate how this developmental map pinpoints the origin of lineage-specific developmental abnormalities that are linked to aberrant corticogenesis in mutant mice. The data provide a global picture of the regulatory mechanisms that govern cellular diversification in the neocortex.


Subject(s)
Neocortex/cytology , Neurogenesis , Animals , Cell Differentiation , DNA-Binding Proteins/genetics , Embryo, Mammalian , Gene Expression Regulation, Developmental , Mice , Mice, Inbred C57BL , Mice, Knockout , Neocortex/embryology , Nerve Tissue Proteins/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...