Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1002, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307834

ABSTRACT

Visual illusions and mental imagery are non-physical sensory experiences that involve cortical feedback processing in the primary visual cortex. Using laminar functional magnetic resonance imaging (fMRI) in two studies, we investigate if information about these internal experiences is visible in the activation patterns of different layers of primary visual cortex (V1). We find that imagery content is decodable mainly from deep layers of V1, whereas seemingly 'real' illusory content is decodable mainly from superficial layers. Furthermore, illusory content shares information with perceptual content, whilst imagery content does not generalise to illusory or perceptual information. Together, our results suggest that illusions and imagery, which differ immensely in their subjective experiences, also involve partially distinct early visual microcircuits. However, overlapping microcircuit recruitment might emerge based on the nuanced nature of subjective conscious experience.


Subject(s)
Illusions , Visual Cortex , Humans , Illusions/physiology , Primary Visual Cortex , Visual Cortex/physiology , Photic Stimulation/methods , Feedback , Magnetic Resonance Imaging , Brain Mapping
2.
Biology (Basel) ; 12(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37508451

ABSTRACT

Neurons in the primary visual cortex (V1) receive sensory inputs that describe small, local regions of the visual scene and cortical feedback inputs from higher visual areas processing the global scene context. Investigating the spatial precision of this visual contextual modulation will contribute to our understanding of the functional role of cortical feedback inputs in perceptual computations. We used human functional magnetic resonance imaging (fMRI) to test the spatial precision of contextual feedback inputs to V1 during natural scene processing. We measured brain activity patterns in the stimulated regions of V1 and in regions that we blocked from direct feedforward input, receiving information only from non-feedforward (i.e., feedback and lateral) inputs. We measured the spatial precision of contextual feedback signals by generalising brain activity patterns across parametrically spatially displaced versions of identical images using an MVPA cross-classification approach. We found that fMRI activity patterns in cortical feedback signals predicted our scene-specific features in V1 with a precision of approximately 4 degrees. The stimulated regions of V1 carried more precise scene information than non-stimulated regions; however, these regions also contained information patterns that generalised up to 4 degrees. This result shows that contextual signals relating to the global scene are similarly fed back to V1 when feedforward inputs are either present or absent. Our results are in line with contextual feedback signals from extrastriate areas to V1, describing global scene information and contributing to perceptual computations such as the hierarchical representation of feature boundaries within natural scenes.

3.
Front Hum Neurosci ; 15: 750417, 2021.
Article in English | MEDLINE | ID: mdl-34803635

ABSTRACT

Peripheral vision has different functional priorities for mammals than foveal vision. One of its roles is to monitor the environment while central vision is focused on the current task. Becoming distracted too easily would be counterproductive in this perspective, so the brain should react to behaviourally relevant changes. Gist processing is good for this purpose, and it is therefore not surprising that evidence from both functional brain imaging and behavioural research suggests a tendency to generalize and blend information in the periphery. This may be caused by the balance of perceptual influence in the periphery between bottom-up (i.e., sensory information) and top-down (i.e., prior or contextual information) processing channels. Here, we investigated this interaction behaviourally using a peripheral numerosity discrimination task with top-down and bottom-up manipulations. Participants compared numerosity between the left and right peripheries of a screen. Each periphery was divided into a centre and a surrounding area, only one of which was a task relevant target region. Our top-down task modulation was the instruction which area to attend - centre or surround. We varied the signal strength by altering the stimuli durations i.e., the amount of information presented/processed (as a combined bottom-up and recurrent top-down feedback factor). We found that numerosity perceived in target regions was affected by contextual information in neighbouring (but irrelevant) areas. This effect appeared as soon as stimulus duration allowed the task to be reliably performed and persisted even at the longest duration (1 s). We compared the pattern of results with an ideal-observer model and found a qualitative difference in the way centre and surround areas interacted perceptually in the periphery. When participants reported on the central area, the irrelevant surround would affect the response as a weighted combination - consistent with the idea of a receptive field focused in the target area to which irrelevant surround stimulation leaks in. When participants report on surround, we can best describe the response with a model in which occasionally the attention switches from task relevant surround to task irrelevant centre - consistent with a selection model of two competing streams of information. Overall our results show that the influence of spatial context in the periphery is mandatory but task dependent.

4.
Front Syst Neurosci ; 15: 669256, 2021.
Article in English | MEDLINE | ID: mdl-34122023

ABSTRACT

Cross-modal effects provide a model framework for investigating hierarchical inter-areal processing, particularly, under conditions where unimodal cortical areas receive contextual feedback from other modalities. Here, using complementary behavioral and brain imaging techniques, we investigated the functional networks participating in face and voice processing during gender perception, a high-level feature of voice and face perception. Within the framework of a signal detection decision model, Maximum likelihood conjoint measurement (MLCM) was used to estimate the contributions of the face and voice to gender comparisons between pairs of audio-visual stimuli in which the face and voice were independently modulated. Top-down contributions were varied by instructing participants to make judgments based on the gender of either the face, the voice or both modalities (N = 12 for each task). Estimated face and voice contributions to the judgments of the stimulus pairs were not independent; both contributed to all tasks, but their respective weights varied over a 40-fold range due to top-down influences. Models that best described the modal contributions required the inclusion of two different top-down interactions: (i) an interaction that depended on gender congruence across modalities (i.e., difference between face and voice modalities for each stimulus); (ii) an interaction that depended on the within modalities' gender magnitude. The significance of these interactions was task dependent. Specifically, gender congruence interaction was significant for the face and voice tasks while the gender magnitude interaction was significant for the face and stimulus tasks. Subsequently, we used the same stimuli and related tasks in a functional magnetic resonance imaging (fMRI) paradigm (N = 12) to explore the neural correlates of these perceptual processes, analyzed with Dynamic Causal Modeling (DCM) and Bayesian Model Selection. Results revealed changes in effective connectivity between the unimodal Fusiform Face Area (FFA) and Temporal Voice Area (TVA) in a fashion that paralleled the face and voice behavioral interactions observed in the psychophysical data. These findings explore the role in perception of multiple unimodal parallel feedback pathways.

5.
Neuroimage ; 181: 30-43, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29986833

ABSTRACT

Surface color appearance depends on both local surface chromaticity and global context. How are these inter-dependencies supported by cortical networks? Combining functional imaging and psychophysics, we examined if color from long-range filling-in engages distinct pathways from responses caused by a field of uniform chromaticity. We find that color from filling-in is best classified and best correlated with appearance by two dorsal areas, V3A and V3B/KO. In contrast, a field of uniform chromaticity is best classified by ventral areas hV4 and LO. Dynamic causal modeling revealed feedback modulation from area V3A to areas V1 and LO for filling-in, contrasting with feedback from LO modulating areas V1 and V3A for a matched uniform chromaticity. These results indicate a dorsal stream role in color filling-in via feedback modulation of area V1 coupled with a cross-stream modulation of ventral areas suggesting that local and contextual influences on color appearance engage distinct neural networks.


Subject(s)
Brain Mapping/methods , Color Perception/physiology , Contrast Sensitivity/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Visual Cortex/physiology , Adult , Female , Humans , Male , Pattern Recognition, Automated/methods , Support Vector Machine , Visual Cortex/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...