Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Appl Opt ; 60(35): 10945-10953, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-35200857

ABSTRACT

Data on the refractive index of silver thin films are scarce in the literature, and largely dependent on both the deposition method and thickness. We measure the refractive index of silver films at cryogenic temperature with a technique that takes advantage of the absorption of the films and the corresponding peculiar properties of Fabry-Perot cavities: a frequency shift between the reflection and transmission peaks, together with a modified cavity bandwidth. We demonstrate a decrease in the real value of the refractive index, together with a decrease in its imaginary value at 4 K.

2.
Article in English | MEDLINE | ID: mdl-29994671

ABSTRACT

In this paper, the phase noise of aluminum nitride (AlN) contour-mode resonators is investigated using a passive measurement system with carrier suppression. The purpose is to make careful measurements of the performance of AlN resonators in order to better understand and clarify previously reported frequency instability in these devices. The resonant frequencies of the resonators are around 220 MHz. The motional parameters, the thermal behavior, and the nonlinear power effect of these resonators have been evaluated. Then, the principle of the noise measurement system is reviewed, and the resonator conditioning is shown. Finally, the noise measurements of the resonators are presented and discussed.

3.
Rev Sci Instrum ; 87(12): 123906, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28040968

ABSTRACT

A new method of probing mechanical losses and comparing the corresponding deposition processes of metallic and dielectric coatings in 1-100 MHz frequency range and cryogenic temperatures is presented. The method is based on the use of high-quality quartz acoustic cavities whose internal losses are orders of magnitude lower than any available coating nowadays. The approach is demonstrated for chromium, chromium/gold, and multilayer tantala/silica coatings. The Ta2O5/SiO2 coating has been found to exhibit a loss angle lower than 1.6 × 10-5 near 30 MHz at 4 K. The results are compared to the previous measurements.

4.
Article in English | MEDLINE | ID: mdl-26701342

ABSTRACT

Quartz crystal resonators can exhibit huge quality factors (in excess of 1 billion) at liquid-helium temperature. However, they must satisfy a set of conditions to meet this high level of performance. With the help of experimentation, the main conditions are identified, such as the material quality, the energy trapping due to the vibrational mode structure, as well as the corresponding influence of the support mechanism and the effects of the electrodes.

5.
Sci Rep ; 5: 14001, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26365754

ABSTRACT

This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 µm.

6.
Sci Rep ; 3: 2132, 2013.
Article in English | MEDLINE | ID: mdl-23823569

ABSTRACT

Low loss Bulk Acoustic Wave devices are considered from the point of view of the solid state approach as phonon-confining cavities. We demonstrate effective design of such acoustic cavities with phonon-trapping techniques exhibiting extremely high quality factors for trapped longitudinally-polarized phonons of various wavelengths. Quality factors of observed modes exceed 1 billion, with a maximum Q-factor of 8 billion and Q × f product of 1.6 · 10(18) at liquid helium temperatures. Such high sensitivities allow analysis of intrinsic material losses in resonant phonon systems. Various mechanisms of phonon losses are discussed and estimated.

7.
Article in English | MEDLINE | ID: mdl-23192824

ABSTRACT

This paper reports on a compact table-top Cs clock based on coherent population trapping (CPT) with advanced frequency stability performance. The heart of the clock is a single buffer gas Cs-Ne microfabricated cell. Using a distributed feedback (DFB) laser resonant with the Cs D1 line, the contrast of the CPT signal is found to be maximized around 80°C, a value for which the temperature dependence of the Cs clock frequency is canceled. Advanced techniques are implemented to actively stabilize the clock operation on a zero-light-shift point. The clock frequency stability is measured to be 3.8 × 10(-11) at 1 s and well below 10(-11) until 50,000 s. These results demonstrate the possibility to develop high-performance chip-scale atomic clocks using vapor cells containing a single buffer gas.

8.
Article in English | MEDLINE | ID: mdl-22293732

ABSTRACT

The phase noise of a quartz crystal resonator working at liquid helium temperatures is studied. Measurement methods and the device environment are explained. The phase noise is measured for different resonance modes, excitation levels, amount of operating time, device orientations in relation to the cryocooler vibration axis, and temperatures. Stability limits of a frequency source based on such devices are evaluated in the present measurement conditions. The sources of phase flicker and white noises are identified. Finally, the results are compared with previous works.

9.
Article in English | MEDLINE | ID: mdl-22083763

ABSTRACT

A novel, simple method is proposed to increase the frequency stability of an oscillator. An additional negative feedback is used in combination with the positive loop of the harmonic oscillator to decrease the phase sensitivity to fluctuations of parameters other than the resonator. The main advantage of the proposed correction approach is that it does not require expensive external elements such as mixers or resonators. The validity of the method is theoretically demonstrated on a Colpitts oscillator using the control system theory approach and numerical simulations, and is experimentally verified with phase noise measurements of an actual oscillator-mockup. It is shown that the medium-term frequency stability can be easily improved by a factor of ten.


Subject(s)
Electronics/instrumentation , Models, Theoretical , Oscillometry/instrumentation , Computer Simulation , Computer-Aided Design , Feedback
10.
Article in English | MEDLINE | ID: mdl-18986888

ABSTRACT

Presently, to our knowledge, measurement of the noise of langatate (LGT) crystal oscillators has not previously been reported. First results of such a measurement are given in this paper. They have been obtained from 10 MHz resonator prototypes tested with a dedicated electronics. The main steps of the resonator manufacturing are described in this paper. Good quality factors, close to 1.4 10(6), have already been achieved on the 5th overtone of the thickness shear mode of LGT Y cuts, even if the energy trapping should still be optimized. The motional parameters of these resonator prototypes are quite different from those of usual quartz crystal resonators. As a consequence, dedicated sustaining electronics have been designed. The explored options are reported to justify the implemented one. Moreover, the high thermal sensitivity of LGT crystal resonators (parabolic f-T curve) requires that particular attention be paid to the oven thermal stability. This important feature is also pointed out in the paper. The preliminary version of the resulting system exhibits a relative frequency stability of 6 10(-12).


Subject(s)
Acoustics/instrumentation , Ceramics/chemistry , Oscillometry/instrumentation , Equipment Design , Equipment Failure Analysis , Pilot Projects , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...