Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 17963, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864099

ABSTRACT

The need for direct X-ray detection under high photon flux with moderate or high energies (30-100 keV range) has strongly increased with the rise of the 4th Generation Synchrotron Light Sources, characterised by extremely brilliant beamlines, and of other applications such as spectral computed tomography in medicine and non-destructive tests for industry. The novel Cadmium Zinc Telluride (CZT) developed by Redlen Technologies can be considered the reference material for high-flux applications (HF-CZT). The enhanced charge transport properties of the holes allow the mitigation of the effects of radiation induced polarization phenomena, typically observed in standard CZT materials (LF-CZT) under high photon flux. However, standard LF-CZT electrical contacts led to inacceptable high dark leakage currents on HF-CZT devices. In this work, a detailed study on the characteristics of new optimized sputtered platinum electrical contacts on HF-CZT detectors is reported. The results from electrical and spectroscopic investigations, showed the best performances on HF-CZT detectors with platinum anode, coupled with both platinum or gold cathode. The morphology, structure, and composition of Pt/CZT contact have been analysed by means of Transmission Electron Microscopy (TEM) on microscopic lamellas obtained by Focused Ion Beam (FIB), highlighting the presence of CdTeO3 oxide at the metal semiconductor interface.

2.
Sensors (Basel) ; 23(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687783

ABSTRACT

Kaonic atom X-ray spectroscopy is a consolidated technique for investigations on the physics of strong kaon-nucleus/nucleon interaction. Several experiments have been conducted regarding the measurement of soft X-ray emission (<20 keV) from light kaonic atoms (hydrogen, deuterium, and helium). Currently, there have been new research activities within the framework of the SIDDHARTA-2 experiment and EXCALIBUR proposal focusing on performing precise and accurate measurements of hard X-rays (>20 keV) from intermediate kaonic atoms (carbon, aluminum, and sulfur). In this context, we investigated cadmium-zinc-telluride (CdZnTe or CZT) detectors, which have recently demonstrated high-resolution capabilities for hard X-ray and gamma-ray detection. A demonstrator prototype based on a new cadmium-zinc-telluride quasi-hemispherical detector and custom digital pulse processing electronics was developed. The detector covered a detection area of 1 cm2 with a single readout channel and interesting room-temperature performance with energy resolution of 4.4% (2.6 keV), 3% (3.7 keV), and 1.4% (9.3 keV) FWHM at 59.5, 122.1, and 662 keV, respectively. The results from X-ray measurements at the DAΦNE collider at the INFN National Laboratories of Frascati (Italy) are also presented with particular attention to the effects and rejection of electromagnetic and hadronic background.

3.
Sensors (Basel) ; 23(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37765731

ABSTRACT

Oral capillaroscopy is a critical and non-invasive technique used to evaluate microcirculation. Its ability to observe small vessels in vivo has generated significant interest in the field. Capillaroscopy serves as an essential tool for diagnosing and prognosing various pathologies, with anatomic-pathological lesions playing a crucial role in their progression. Despite its importance, the utilization of videocapillaroscopy in the oral cavity encounters limitations due to the acquisition setup, encompassing spatial and temporal resolutions of the video camera, objective magnification, and physical probe dimensions. Moreover, the operator's influence during the acquisition process, particularly how the probe is maneuvered, further affects its effectiveness. This study aims to address these challenges and improve data reliability by developing a computerized support system for microcirculation analysis. The designed system performs stabilization, enhancement and automatic segmentation of capillaries in oral mucosal video sequences. The stabilization phase was performed by means of a method based on the coupling of seed points in a classification process. The enhancement process implemented was based on the temporal analysis of the capillaroscopic frames. Finally, an automatic segmentation phase of the capillaries was implemented with the additional objective of quantitatively assessing the signal improvement achieved through the developed techniques. Specifically, transfer learning of the renowned U-net deep network was implemented for this purpose. The proposed method underwent testing on a database with ground truth obtained from expert manual segmentation. The obtained results demonstrate an achieved Jaccard index of 90.1% and an accuracy of 96.2%, highlighting the effectiveness of the developed techniques in oral capillaroscopy. In conclusion, these promising outcomes encourage the utilization of this method to assist in the diagnosis and monitoring of conditions that impact microcirculation, such as rheumatologic or cardiovascular disorders.


Subject(s)
Capillaries , Cardiovascular Diseases , Humans , Capillaries/diagnostic imaging , Microscopic Angioscopy/methods , Reproducibility of Results , Cardiovascular Diseases/pathology , Veins , Image Processing, Computer-Assisted/methods
4.
Sensors (Basel) ; 23(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37447923

ABSTRACT

The estimation of the characteristic parameters of the electrical contacts in CdZnTe and CdTe detectors is related to the identification of the main transport mechanisms dominating the currents. These investigations are typically approached by modelling the current-voltage (I-V) curves with the interfacial layer-thermionic-diffusion (ITD) theory, which incorporates the thermionic emission, diffusion and interfacial layer theories into a single theory. The implementation of the ITD model in measured I-V curves is a critical procedure, requiring dedicated simplifications, several best fitting parameters and the identification of the voltage range where each transport mechanism dominates. In this work, we will present a novel method allowing through a simple procedure the estimation of some characteristic parameters of the metal-semiconductor interface in CdZnTe and CdTe detectors. The barrier height and the effects of the interfacial layer will be evaluated through the application of a new function related to the differentiation of the experimental I-V curves.


Subject(s)
Cadmium Compounds , Quantum Dots , Tellurium
5.
Sensors (Basel) ; 23(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36991907

ABSTRACT

The spectroscopic and imaging performance of energy-resolved photon counting detectors, based on new sub-millimetre boron oxide encapsulated vertical Bridgman cadmium zinc telluride linear arrays, are presented in this work. The activities are in the framework of the AVATAR X project, planning the development of X-ray scanners for contaminant detection in food industry. The detectors, characterized by high spatial (250 µm) and energy (<3 keV) resolution, allow spectral X-ray imaging with interesting image quality improvements. The effects of charge sharing and energy-resolved techniques on contrast-to-noise ratio (CNR) enhancements are investigated. The benefits of a new energy-resolved X-ray imaging approach, termed window-based energy selecting, in the detection of low- and high-density contaminants are also shown.

6.
Sensors (Basel) ; 23(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36850765

ABSTRACT

Radiation detectors based on Cadmium Zinc Telluride (CZT) compounds are becoming popular solutions thanks to their high detection efficiency, room temperature operation, and to their reliability in compact detection systems for medical, astrophysical, or industrial applications. However, despite a huge effort to improve the technological process, CZT detectors' full potential has not been completely exploited when both high spatial and energy resolution are required by the application, especially at low energies (<10 keV), limiting their application in energy-resolved photon counting (ERPC) systems. This gap can also be attributed to the lack of dedicated front-end electronics which can bring out the best in terms of detector spectroscopic performances. In this work, we present the latest results achieved in terms of energy resolution using SIRIO, a fast low-noise charge sensitive amplifier, and a linear-array pixel detector, based on boron oxide encapsulated vertical Bridgman-grown B-VB CZT crystals. The detector features a 0.25-mm pitch, a 1-mm thickness and is operated at a -700-V bias voltage. An equivalent noise charge of 39.2 el. r.m.s. (corresponding to 412 eV FWHM) was measured on the test pulser at 32 ns peaking time, leading to a raw resolution of 1.3% (782 eV FWHM) on the 59 keV line at room temperature (+20 °C) using an uncollimated 241Am, largely improving the current state of the art for CZT-based detection systems at such short peaking times, and achieving an optimum resolution of 0.97% (576 eV FWHM) at 1 µs peaking time. The measured energy resolution at the 122 keV line and with 1 µs peaking time of a 57Co raw uncollimated spectrum is 0.96% (1.17 keV). These activities are in the framework of an Italian collaboration on the development of energy-resolved X-ray scanners for material recycling, medical applications, and non-destructive testing in the food industry.

7.
Sci Rep ; 13(1): 3212, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36828862

ABSTRACT

In this paper we present the development of quasi-hemispherical gamma-ray detectors based on CdZnTe. Among the possible single-polarity electrode configurations, such as coplanar, pixelated, or virtual Frisch-grid geometries, quasi-hemispherical detectors are the most cost-effective alternative with comparable raw energy resolution in the high and low energy range. The optimal configuration of the sensor in terms of dimension of the crystals and electrode specifications has been first determined by simulations, and successively validated with experimental measures. Spectra from different sources have been acquired to evaluate the detectors performances. Three types of detectors with different CZT volumes have been fabricated, namely 10 × 10 × 5 mm3, 15 × 15 × 10 mm3 and 20 × 20 × 10 mm3. In the case of 10 × 10 × 5 mm3 crystals, the optimum pixel size determined by our simulation tool was confirmed by experiments: the best spectroscopic resolution of 1.3% at 662 keV has been found for a 750 µm diameter pixel detector. The best energy resolution values obtained for the 15 × 15 × 10 mm3 and 20 × 20 × 10 mm3 detectors were respectively 1.7% and 2.7% at 662 keV.

8.
Sensors (Basel) ; 22(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591099

ABSTRACT

High-flux X-ray measurements with high-energy resolution and high throughput require the mitigation of pile-up and dead time effects. The reduction of the time width of the shaped pulses is a key approach, taking into account the distortions from the ballistic deficit, non-linearity, and time instabilities. In this work, we will present the performance of cadmium−zinc−telluride (CdZnTe or CZT) pixel detectors equipped with digital shapers faster than the preamplifier peaking times (ballistic deficit pulse processing). The effects on energy resolution, throughput, energy-linearity, time stability, charge sharing, and pile-up are shown. The results highlight the absence of time instabilities and high-energy resolution (<4% FWHM at 122 keV) when ballistic deficit pulse processing (dead time of 90 ns) was used in CZT pixel detectors. These activities are in the framework of an international collaboration on the development of spectroscopic imagers for medical applications (mammography, computed tomography) and non-destructive testing in the food industry.


Subject(s)
Cadmium , Tellurium , Tellurium/chemistry , X-Rays , Zinc/chemistry
9.
Sensors (Basel) ; 22(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35214414

ABSTRACT

Recently, new high-resolution cadmium-zinc-telluride (CZT) drift strip detectors for room temperature gamma-ray spectroscopic imaging were developed by our group. The CZT detectors equipped with orthogonal anode/cathode collecting strips, drift strips and dedicated pulse processing allow a detection area of 6 × 20 mm2 and excellent room temperature spectroscopic performance (0.82% FWHM at 661.7 keV). In this work, we investigated the potentialities of these detectors for prompt gamma-ray spectroscopy (PGS) in boron neutron capture therapy (BNCT). The detectors, exploiting the measurement of the 478 keV prompt gamma rays emitted by 94% 7Li nuclides from the 10B(n, α)7Li reaction, are very appealing for the development of single-photon emission computed tomography (SPECT) systems and Compton cameras in BNCT. High-resolution gamma-ray spectra from 10B samples under thermal neutrons were measured at the T.R.I.G.A. Mark II research nuclear reactor of the University of Pavia (Italy).


Subject(s)
Boron Neutron Capture Therapy , Boron Neutron Capture Therapy/methods , Cadmium , Gamma Rays , Tellurium/chemistry , Zinc
10.
Sensors (Basel) ; 22(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35214342

ABSTRACT

The success of cadmium zinc telluride (CZT) detectors in room-temperature spectroscopic X-ray imaging is now widely accepted. The most common CZT detectors are characterized by enhanced-charge transport properties of electrons, with mobility-lifetime products µeτe > 10-2 cm2/V and µhτh > 10-5 cm2/V. These materials, typically termed low-flux LF-CZT, are successfully used for thick electron-sensing detectors and in low-flux conditions. Recently, new CZT materials with hole mobility-lifetime product enhancements (µhτh > 10-4 cm2/V and µeτe > 10-3 cm2/V) have been fabricated for high-flux measurements (high-flux HF-CZT detectors). In this work, we will present the performance and charge-sharing properties of sub-millimeter CZT pixel detectors based on LF-CZT and HF-CZT crystals. Experimental results from the measurement of energy spectra after charge-sharing addition (CSA) and from 2D X-ray mapping highlight the better charge-collection properties of HF-CZT detectors near the inter-pixel gaps. The successful mitigation of the effects of incomplete charge collection after CSA was also performed through original charge-sharing correction techniques. These activities exist in the framework of international collaboration on the development of energy-resolved X-ray scanners for medical applications and non-destructive testing in the food industry.


Subject(s)
Cadmium Compounds , Cadmium , Cadmium Compounds/chemistry , Photons , Tellurium/chemistry , X-Rays , Zinc/chemistry
11.
Sensors (Basel) ; 21(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34451067

ABSTRACT

High temperature reverse-bias (HTRB), High temperature gate-bias (HTGB) tests and electrical DC characterization were performed on planar-SiC power MOSFETs which survived to accelerated neutron irradiation tests carried out at ChipIr-ISIS (Didcot, UK) facility, with terrestrial neutrons. The neutron test campaigns on the SiC power MOSFETs (manufactered by ST) were conducted on the same wafer lot devices by STMicroelectronics and Airbus, with different neutron tester systems. HTGB and HTRB tests, which characterise gate-oxide integrity and junction robustness, show no difference between the non irradiated devices and those which survived to the neutron irradiation tests, with neutron fluence up to 2× 1011 (n/cm2). Electrical characterization performed pre and post-irradiation on different part number of power devices (Si, SiC MOSFETs and IGBTs) which survived to neutron irradiation tests does not show alteration of the data-sheet electrical parameters due to neutron interaction with the device.

12.
Sensors (Basel) ; 21(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070426

ABSTRACT

Multiple coincidence events from charge-sharing and fluorescent cross-talk are typical drawbacks in room-temperature semiconductor pixel detectors. The mitigation of these distortions in the measured energy spectra, using charge-sharing discrimination (CSD) and charge-sharing addition (CSA) techniques, is always a trade-off between counting efficiency and energy resolution. The energy recovery of multiple coincidence events is still challenging due to the presence of charge losses after CSA. In this work, we will present original techniques able to correct charge losses after CSA even when multiple pixels are involved. Sub-millimeter cadmium-zinc-telluride (CdZnTe or CZT) pixel detectors were investigated with both uncollimated radiation sources and collimated synchrotron X rays, at energies below and above the K-shell absorption energy of the CZT material. These activities are in the framework of an international collaboration on the development of energy-resolved photon counting (ERPC) systems for spectroscopic X-ray imaging up to 150 keV.

13.
J Synchrotron Radiat ; 27(Pt 6): 1564-1576, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33147181

ABSTRACT

In the last two decades, great efforts have been made in the development of 3D cadmium-zinc-telluride (CZT) detectors operating at room temperature for gamma-ray spectroscopic imaging. This work presents the spectroscopic performance of new high-resolution CZT drift strip detectors, recently developed at IMEM-CNR of Parma (Italy) in collaboration with due2lab (Italy). The detectors (19.4 mm × 19.4 mm × 6 mm) are organized into collecting anode strips (pitch of 1.6 mm) and drift strips (pitch of 0.4 mm) which are negatively biased to optimize electron charge collection. The cathode is divided into strips orthogonal to the anode strips with a pitch of 2 mm. Dedicated pulse processing analysis was performed on a wide range of collected and induced charge pulse shapes using custom 32-channel digital readout electronics. Excellent room-temperature energy resolution (1.3% FWHM at 662 keV) was achieved using the detectors without any spectral corrections. Further improvements (0.8% FWHM at 662 keV) were also obtained through a novel correction technique based on the analysis of collected-induced charge pulses from anode and drift strips. These activities are in the framework of two Italian research projects on the development of spectroscopic gamma-ray imagers (10-1000 keV) for astrophysical and medical applications.

14.
J Synchrotron Radiat ; 27(Pt 5): 1180-1189, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32876592

ABSTRACT

Cadmium-zinc-telluride (CZT) pixel detectors represent a consolidated choice for the development of room-temperature spectroscopic X-ray imagers, finding important applications in medical imaging, often as detection modules of a variety of new SPECT and CT systems. Detectors with 3-5 mm thicknesses are able to efficiently detect X-rays up to 140 keV giving reasonable room-temperature energy resolution. In this work, the room-temperature performance of 3 mm-thick CZT pixel detectors, recently developed at IMEM/CNR of Parma (Italy), is presented. Sub-millimetre detector arrays with pixel pitch less than 500 µm were fabricated. The detectors are characterized by good room-temperature performance even at high bias voltage operation (6000 V cm-1), with energy resolutions (FWHM) of 3% (1.8 keV) and 1.6% (2 keV) at 59.5 keV and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to recovering the charge losses at the inter-pixel gap region. High rate measurements demonstrated the absence of high-flux radiation-induced polarization phenomena up to 25 × 106 photons mm-2 s-1.

15.
Sci Rep ; 10(1): 13762, 2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32792585

ABSTRACT

Platinum is a promising candidate for the realization of blocking electrical contacts on cadmium-zinc-telluride (CdZnTe or CZT) radiation detectors. However, the poor mechanical adhesion of this metal often shortens the lifetime of the final device. In this work, a simple and effective procedure to obtain robust platinum contacts by electroless deposition is presented. Microscopical analysis revealed the final thickness and composition of the contact layer and its adhesion to the bulk crystal. The blocking nature of the Pt-CdZnTe junction, essential to obtain low noise devices, was confirmed by current-voltage measurements. The planar Pt-CdZnTe-Pt detectors showed good room temperature spectroscopic performance with energy resolution of 4% (2.4 keV) and 3% (3.7 keV) FWHM at 59.5 and 122.1 keV, respectively. Finally, we showed, for the first time, that platinum contacts allow the estimation of the carrier lifetime and mobility of both holes and electrons by using current transient measurements. This demonstrated the optimal hole extraction capability of such contacts.

16.
Sensors (Basel) ; 20(11)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466560

ABSTRACT

Neutron test campaigns on silicon (Si) and silicon carbide (SiC) power MOSFETs and IGBTs were conducted at the TRIGA (Training, Research, Isotopes, General Atomics) Mark II (Pavia, Italy) nuclear reactor and ChipIr-ISIS Neutron and Muon Source (Didcot, U.K.) facility. About 2000 power transistors made by STMicroelectronics were tested in all the experiments. Tests with thermal and fast neutrons (up to about 10 MeV) at the TRIGA Mark II reactor showed that single-event burnout (SEB) failures only occurred at voltages close to the rated drain-source voltage. Thermal neutrons did not induce SEB, nor degradation in the electrical parameters of the devices. SEB failures during testing at ChipIr with ultra-fast neutrons (1-800 MeV) were evaluated in terms of failure in time (FIT) versus derating voltage curves according to the JEP151 procedure of the Joint Electron Device Engineering Council (JEDEC). These curves, even if scaled with die size and avalanche voltage, were strongly linked to the technological processes of the devices, although a common trend was observed that highlighted commonalities among the failures of different types of MOSFETs. In both experiments, we observed only SEB failures without single-event gate rupture (SEGR) during the tests. None of the power devices that survived the neutron tests were degraded in their electrical performances. A study of the worst-case bias condition (gate and/or drain) during irradiation was performed.

17.
J Synchrotron Radiat ; 27(Pt 2): 319-328, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32153270

ABSTRACT

In this work, the spectroscopic performances of new cadmium-zinc-telluride (CZT) pixel detectors recently developed at IMEM-CNR of Parma (Italy) are presented. Sub-millimetre arrays with pixel pitch less than 500 µm, based on boron oxide encapsulated vertical Bridgman grown CZT crystals, were fabricated. Excellent room-temperature performance characterizes the detectors even at high-bias-voltage operation (9000 V cm-1), with energy resolutions (FWHM) of 4% (0.9 keV), 1.7% (1 keV) and 1.3% (1.6 keV) at 22.1, 59.5 and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to the mitigation of the charge losses at the inter-pixel gap region. High-rate measurements demonstrated the absence of high-flux radiation-induced polarization phenomena up to 2 × 106 photons mm-2 s-1. These activities are in the framework of an international collaboration on the development of energy-resolved photon-counting systems for high-flux energy-resolved X-ray imaging.

18.
J Synchrotron Radiat ; 25(Pt 4): 1078-1092, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29979169

ABSTRACT

Charge losses at the inter-pixel gap are typical drawbacks in cadmium-zinc-telluride (CZT) pixel detectors. In this work, an original technique able to correct charge losses occurring after the application of charge-sharing addition (CSA) is presented. The method, exploiting the strong relation between the energy after CSA and the beam position at the inter-pixel gap, allows the recovery of charge losses and improvements in energy resolution. Sub-millimetre CZT pixel detectors were investigated with both uncollimated radiation sources and collimated synchrotron X-rays, at energies below and above the K-shell absorption energy of the CZT material. The detectors are DC coupled to fast and low-noise charge-sensitive preamplifiers (PIXIE ASIC) and followed by a 16-channel digital readout electronics, performing multi-parameter analysis (event arrival time, pulse shape, pulse height). Induced-charge pulses with negative polarity were also observed in the waveforms from the charge-sensitive preamplifiers (CSPs) at energies >60 keV. The shape and the height of these pulses were analysed, and their role in the mitigation of charge losses in CZT pixel detectors. These activities are in the framework of an international collaboration on the development of energy-resolved photon-counting systems for spectroscopic X-ray imaging (5-140 keV).

19.
J Synchrotron Radiat ; 25(Pt 1): 257-271, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29271775

ABSTRACT

Cadmium-zinc-telluride (CZT) arrays with photon-counting and energy-resolving capabilities are widely proposed for next-generation X-ray imaging systems. This work presents the performance of a 2 mm-thick CZT pixel detector, with pixel pitches of 500 and 250 µm, dc coupled to a fast and low-noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readout electronics was used, able to digitize and process continuously the signals from each output ASIC channel. The digital system performs on-line fast pulse shape and height analysis, with a low dead-time and reasonable energy resolution at both low and high fluxes. The spectroscopic response of the system to photon energies below (109Cd source) and above (241Am source) the K-shell absorption energy of the CZT material was investigated, with particular attention to the mitigation of charge sharing and pile-up. The detector allows high bias voltage operation (>5000 V cm-1) and good energy resolution at moderate cooling (3.5% and 5% FWHM at 59.5 keV for the 500 and 250 µm arrays, respectively) by using fast pulse shaping with a low dead-time (300 ns). Charge-sharing investigations were performed using a fine time coincidence analysis (TCA), with very short coincidence time windows up to 10 ns. For the 500 µm pitch array (250 µm pitch array), sharing percentages of 36% (52%) and 60% (82%) at 22.1 and 59.5 keV, respectively, were measured. The potential of the pulse shape analysis technique for charge-sharing detection for corner/border pixels and at high rate conditions (250 kcps pixel-1), where the TCA fails, is also shown. Measurements demonstrated that significant amounts of charge are lost for interactions occurring in the volume of the inter-pixel gap. This charge loss must be accounted for in the correction of shared events. These activities are within the framework of an international collaboration on the development of energy-resolved photon-counting systems for high-flux energy-resolved X-ray imaging (1-140 keV).

20.
J Synchrotron Radiat ; 24(Pt 2): 429-438, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28244436

ABSTRACT

Recently, CdZnTe (CZT) detectors have been widely proposed and developed for room-temperature X-ray spectroscopy even at high fluxes, and great efforts have been made on both the device and the crystal growth technologies. In this work, the performance of new travelling-heater-method (THM)-grown CZT detectors, recently developed at IMEM-CNR Parma, Italy, is presented. Thick planar detectors (3 mm thick) with gold electroless contacts were realised, with a planar cathode covering the detector surface (4.1 mm × 4.1 mm) and a central anode (2 mm × 2 mm) surrounded by a guard-ring electrode. The detectors, characterized by low leakage currents at room temperature (4.7 nA cm-2 at 1000 V cm-1), allow good room-temperature operation even at high bias voltages (>7000 V cm-1). At low rates (200 counts s-1), the detectors exhibit an energy resolution around 4% FWHM at 59.5 keV (241Am source) up to 2200 V, by using commercial front-end electronics (A250F/NF charge-sensitive preamplifier, Amptek, USA; nominal equivalent noise charge of 100 electrons RMS). At high rates (1 Mcounts s-1), the detectors, coupled to a custom-designed digital pulse processing electronics developed at DiFC of University of Palermo (Italy), show low spectroscopic degradations: energy resolution values of 8% and 9.7% FWHM at 59.5 keV (241Am source) were measured, with throughputs of 0.4% and 60% at 1 Mcounts s-1, respectively. An energy resolution of 7.7% FWHM at 122.1 keV (57Co source) with a throughput of 50% was obtained at 550 kcounts s-1 (energy resolution of 3.2% at low rate). These activities are in the framework of an Italian research project on the development of energy-resolved photon-counting systems for high-flux energy-resolved X-ray imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...