Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557192

ABSTRACT

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Subject(s)
Adenosine Triphosphatases , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Rats , Mice , Animals , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Cell Line , Chromatin , Mammals/genetics , Androgen Receptor Antagonists , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
3.
bioRxiv ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38464081

ABSTRACT

Mammalian switch/sucrose non-fermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, a first-in-class, orally bioavailable proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 (BRD4) and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.

4.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38328238

ABSTRACT

The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.

5.
Bioorg Med Chem Lett ; 55: 128448, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34767914

ABSTRACT

Multiple Splice variants of AR have been reported in the past few years. These splice variants are upregulated in most cases of CRPC resulting in poor prognosis. Most of these variants lack the ligand binding domain (LBD) but still bind to DNA resulting in constitutive activation of downstream targets. The AR-V7 splice variant has been characterized extensively and current clinical trials in CRPC are exploring the use of AR-V7 as a biomarker. New therapeutic molecules that selectively target AR-V7 are also being explored. However, there is a dearth of information available on the selectivity, phenotypic responses in AR-V7 dependent cell lines and pharmacokinetic properties of such molecules. Using our proprietary computational algorithms and rational SAR optimization, we have developed a potent and selective AR-V7 degrader from a known AR DNA binding domain (DBD) binder. This molecule effectively degraded AR-V7 in a CRPC cell line and demonstrated good oral bioavailability in mouse PK studies. This tool compound can be used to evaluate the pharmacological effects of AR-V7 degraders. Further exploration of SAR can be pursued to develop more optimized lead compounds.


Subject(s)
Drug Design , Receptors, Androgen/metabolism , Thiazoles/pharmacology , Administration, Oral , Animals , Biological Availability , Dose-Response Relationship, Drug , Humans , Male , Mice , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiazoles/administration & dosage , Thiazoles/chemistry
6.
Nature ; 601(7893): 434-439, 2022 01.
Article in English | MEDLINE | ID: mdl-34937944

ABSTRACT

The switch/sucrose non-fermentable (SWI/SNF) complex has a crucial role in chromatin remodelling1 and is altered in over 20% of cancers2,3. Here we developed a proteolysis-targeting chimera (PROTAC) degrader of the SWI/SNF ATPase subunits, SMARCA2 and SMARCA4, called AU-15330. Androgen receptor (AR)+ forkhead box A1 (FOXA1)+ prostate cancer cells are exquisitely sensitive to dual SMARCA2 and SMARCA4 degradation relative to normal and other cancer cell lines. SWI/SNF ATPase degradation rapidly compacts cis-regulatory elements bound by transcription factors that drive prostate cancer cell proliferation, namely AR, FOXA1, ERG and MYC, which dislodges them from chromatin, disables their core enhancer circuitry, and abolishes the downstream oncogenic gene programs. SWI/SNF ATPase degradation also disrupts super-enhancer and promoter looping interactions that wire supra-physiologic expression of the AR, FOXA1 and MYC oncogenes themselves. AU-15330 induces potent inhibition of tumour growth in xenograft models of prostate cancer and synergizes with the AR antagonist enzalutamide, even inducing disease remission in castration-resistant prostate cancer (CRPC) models without toxicity. Thus, impeding SWI/SNF-mediated enhancer accessibility represents a promising therapeutic approach for enhancer-addicted cancers.


Subject(s)
Adenosine Triphosphatases , DNA Helicases , Nuclear Proteins , Prostatic Neoplasms , Transcription Factors , Adenosine Triphosphatases/metabolism , Animals , Benzamides , DNA Helicases/genetics , Enhancer Elements, Genetic , Genes, myc , Hepatocyte Nuclear Factor 3-alpha , Humans , Male , Nitriles , Nuclear Proteins/genetics , Oncogenes , Phenylthiohydantoin , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Receptors, Androgen , Transcription Factors/genetics , Transcriptional Regulator ERG , Xenograft Model Antitumor Assays
7.
Bioorg Med Chem Lett ; 25(4): 887-92, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25599839

ABSTRACT

Kappa opioid receptor (KOR) is an important mediator of pain signaling and it is targeted for the treatment of various pains. Pharmacophore based mining of databases led to the identification of 2-aminobenzimidazole derivative as KOR agonists with selectivity over the other opioid receptors DOR and MOR. A short SAR exploration with the objective of identifying more polar and hence less brain penetrant agonists is described herewith. Modeling studies of the recently published structures of KOR, DOR and MOR are used to explain the receptor selectivity. The synthesis, biological evaluation and SAR of novel benzimidazole derivatives as KOR agonists are described. The in vivo proof of principle for anti-nociceptive effect with a lead compound from this series is exemplified.


Subject(s)
Benzimidazoles/pharmacology , Receptors, Opioid, kappa/agonists , Amino Acid Sequence , Computer Simulation , Humans , Molecular Sequence Data , Receptors, Opioid, kappa/chemistry , Sequence Homology, Amino Acid , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 22(9): 3163-7, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22497763

ABSTRACT

Melanin concentrating hormone receptor 1 (MCHR1) antagonists have potential for the treatment of obesity and several CNS disorders. In the preceding article, we have described a novel series of quinazolines as MCHR1 antagonists and demonstrated in vivo proof of principle with an early lead. Herein we describe the detailed SAR and SPR studies to identify an optimized lead candidate having good efficacy in a sub-chronic DIO model with a good cardiovascular safety window.


Subject(s)
Drug Design , Quinazolines/chemical synthesis , Receptors, Pituitary Hormone/antagonists & inhibitors , Cardiovascular Diseases/prevention & control , Humans , Quinazolines/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 20(18): 5443-8, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20724156

ABSTRACT

Melanin concentrating hormone (MCH) is an important mediator of energy homeostasis and plays role in several disorders such as obesity, stress, depression and anxiety. The synthesis and biological evaluation of novel benzimidazole derivatives as MCHR1 antagonists are described. The in vivo proof of principle for weight loss with a lead compound from this series is exemplified.


Subject(s)
Anti-Obesity Agents/chemistry , Anti-Obesity Agents/therapeutic use , Benzimidazoles/chemistry , Benzimidazoles/therapeutic use , Obesity/drug therapy , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/metabolism , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Binding , Weight Loss/drug effects
10.
Carbohydr Res ; 338(21): 2237-40, 2003 Oct 10.
Article in English | MEDLINE | ID: mdl-14553986

ABSTRACT

The efficiency of glycosidation reactions generally involves a high chemical yield, as well as high/complete stereo- and regioselectivity. All these depend on the compatibility of the reactivity of glycosyl donors and acceptors. Among glycosyl donors, thioglycosides are widely used because of their high degree of stability in many organic reactions. Although there are number of methods available for the preparation of thioglycosides, all of them have one or more disadvantages, especially concerning the time factor and cumbersome workup procedures. Here we report a convenient and high-yielding method for the preparation of thioglycosides.


Subject(s)
Indium/chemistry , Thioglycosides/chemical synthesis , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...